Invariant fibrations for some birational maps of \mathbb{C}^{2}

Anna Cima and Sundus Zafar (1)
Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Barcelona, Spain

ABSTRACT

In this article, we extract and study the zero entropy subfamilies of a certain family of birational maps of the plane. We find these zero entropy mappings and give the invariant fibrations associated to them.

ARTICLE HISTORY

Received 3 July 2018
Accepted 28 July 2019

KEYWORDS

Birational maps; algebraic entropy; first integrals; fibrations; blowing-up; integrability; periodicity

MATHEMATICS SUBJECT
CLASSIFICATION 2010
14E05; 26C15; 28D20; 34K19;
37C15; 39A23

1. Introduction

A mapping $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ is said to be rational if each coordinate function is rational, that is, f_{i} is a quotient of polynomials for $i=1,2$. These maps can be naturally extended to the projective plane $P \mathbb{C}^{2}$ by considering the embedding $\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2} \rightarrow[1$: $\left.x_{1}: x_{2}\right] \in P \mathbb{C}^{2}$. The induced mapping $F: P \mathbb{C}^{2} \longrightarrow P \mathbb{C}^{2}$ has three components $F_{i}\left[x_{0}: x_{1}:\right.$ x_{2}] which are homogeneous polynomials of the same degree. If F_{1}, F_{2}, F_{3} have no common factors and have degree d, we say that f or F has degree d. Similarly we can define the degree of $F^{n}=F \circ \cdots \circ F$ for each $n \in \mathbb{N}$.

We are interested in birational maps. It is said that a rational mapping $f: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ is birational if there exists an algebraic curve C and another rational map g such that $f \circ g=$ $g \circ f=i d$ in $\mathbb{C}^{2} \backslash C$.

The study of the dynamics generated by birational mappings in the plane has been growing in recent years, see for instance [2,3,6,8,11,15-20,23].

It can be seen that if $f\left(x_{1}, x_{2}\right)$ is a birational map, then the sequence of the degrees of F^{n} satisfies a homogeneous linear recurrence with constant coefficients (see [13] for instance). This is governed by the characteristic polynomial $\mathcal{X}(x)$ of a certain matrix associated to F. The other information we get from $\mathcal{X}(x)$ is the dynamical degree, $\delta(F)$, which is defined as

$$
\begin{equation*}
\delta(F):=\lim _{n \rightarrow \infty}\left(\operatorname{deg}\left(F^{n}\right)\right)^{\frac{1}{n}} . \tag{1}
\end{equation*}
$$

[^0]
[^0]: CONTACT Sundus Zafar sundus@mat.uab.cat Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain

