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Invariant fibrations for some birational maps of C2
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ABSTRACT
In this article, we extract and study the zero entropy subfamilies of
a certain family of birational maps of the plane. We find these zero
entropy mappings and give the invariant fibrations associated to
them.
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1. Introduction

A mapping f = (f1, f2) : C2 −→ C2 is said to be rational if each coordinate function is
rational, that is, fi is a quotient of polynomials for i = 1, 2. These maps can be naturally
extended to the projective plane PC2 by considering the embedding (x1, x2) ∈ C2 → [1 :
x1 : x2] ∈ PC2. The induced mapping F : PC2 −→ PC2 has three components Fi[x0 : x1 :
x2] which are homogeneous polynomials of the same degree. If F1, F2, F3 have no common
factors and have degree d, we say that f or F has degree d. Similarly we can define the degree
of Fn = F ◦ · · · ◦ F for each n ∈ N.

We are interested in birational maps. It is said that a rational mapping f : C2 −→ C2 is
birational if there exists an algebraic curve C and another rational map g such that f ◦ g =
g ◦ f = id in C2 \ C.

The study of the dynamics generated by birational mappings in the plane has been
growing in recent years, see for instance [2,3,6,8,11,15–20,23].

It can be seen that if f (x1, x2) is a birational map, then the sequence of the degrees of Fn
satisfies a homogeneous linear recurrence with constant coefficients (see [13] for instance).
This is governed by the characteristic polynomialX (x) of a certain matrix associated to F.
The other information we get fromX (x) is the dynamical degree, δ(F), which is defined as

δ(F) := lim
n→∞

(
deg(Fn)

) 1
n . (1)
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