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Abstract

The celebrated Kerékjártó theorem asserts that planar continuous periodic maps can be
continuously linearised. We prove that for each k ∈ {1, 2, . . . , ∞}, Ck-planar periodic maps
can be Ck-linearised.

1. Introduction

A continuous map F : R
n → R

n satisfying Fm = Id is called m-periodic. Here F j =
F◦F j−1 and m is the smallest positive natural number with this property. Usually, 2-periodic
maps are called involutions. The simplest examples of periodic maps are found in the class
of linear maps. An endomorphism L : R

n → R
n is periodic if it is diagonalisable in C

and all eigenvalues are roots of unity. It seems natural to ask if these are the only possible
examples, meaning that nonlinear periodic maps are indeed equivalent to linear maps. The
answer to this question depends upon the dimension n and also on the type of equivalence
under consideration.

To initiate the discussions we consider the notion of equivalence induced by topological
conjugacy. A map F : R

n → R
n is said (globally) C0-linearisable if there exists a homeo-

morphism ψ : R
n → R

n, such that L = ψ ◦ F ◦ ψ−1 is a linear map. The couple (L , ψ) is
called a linearisation of F . Notice that we have emphasised the global nature in the above
definition. Although many results in the theory of dynamical systems are concerned with
linearization, most of them are of local nature. This is the case for the well-known Hartman–
Grossman theorem.

In dimension n = 1 it is not hard to prove that all periodic maps are C0- linearizable with
L(x) = x or L(x) = −x . A similar result holds for n = 2, now L is either the symmetry or
a rotation of angle commensurable with 2π .

THEOREM 1·1. (Kerékjártó theorem) Let F : R
2 → R

2 be a continuous m-periodic map.
Then F is C0-linearisable.
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This result goes back to 1919 and appeared in the works of Brouwer and Kerékjártó. Cur-
rently it is known as Kerékjártó theorem. A complete proof was presented by Eilenberg in
1934 (see [6] for more details). Later it was discovered that this theorem cannot be extended
to higher dimensions. In fact, in [1, 2], Bing constructed examples showing that, for any
m � 2, there are continuous m-periodic maps in R

3 which are not linearisable.
Let us now assume that the map F is smooth and consider the equivalence induced by

smooth conjugacy. Given k = 1, 2, . . . , ∞, we say that a map F : R
n → R

n of class Ck

is (globally) Ck-linearizable if it is conjugate to a linear map L via a Ck-diffeomorphism
ψ : R

n → R
n . In dimension n = 1 every non-trivial Ck-periodic map is an involution and

can be written as F(x) = ψ(−ψ−1(x)), for some Ck-diffeomorphism ψ , see for instance
[11]. The main goal of this paper is to extend this result to dimension n = 2 and prove the
Ck version of Kerékjártó theorem. A first step in this direction can be found in [4], where we
dealt with C1-involutions. Here we prove:

THEOREM A. Let F : R
2 → R

2 be a Ck-differentiable m-periodic map with k ∈
{1, 2, . . . , ∞}. Then F is Ck-linearisable.

Note that there is no loss of derivatives in this result. In fact we find a map ψ which is
as smooth as the original map F . This is in contrast with the smooth theory for Hartman–
Grossman theorem, where resonances sometimes produce a loss of derivatives. See [12] for
more details.

Theorem A cannot be extended to arbitrary dimension because in the papers [5, 8, 10] it is
shown that for n � 7 there are smooth periodic maps without fixed points. Obviously these
maps cannot be linearised. It is worth remarking that, when dealing with local linearisability,
there is a result valid in arbitrary dimension. Montgomery and Bochner proved that in any
dimension, m-periodic maps having a fixed point and of class Ck, k � 1, are always locally
Ck-linearisable in a neighbourhood of this point, see [15] or Theorem 3·8 below. As we will
see, an extension of this result will be one of the clues in our approach.

The proof of Theorem A is done in several steps. To describe them, let us introduce some
notation. Given a m-periodic Ck-map F we can apply the classical Kerékjártó theorem and
we already know that it is C0-conjugated to:

(i) the symmetry S(x, y) = (x, −y) in the orientation reversing case;

(ii) the rotation R j
m , where Rm is the rotation of angle α = 2π/m and j is coprime with m,

in the orientation preserving case.

We want to show that if F is of class Ck then it is possible to find a Ck-conjugation. Notice
that in the orientation preserving case it suffices to consider the case of a C0-conjugacy with
Rm , because the other cases can be obtained by iteration. In fact when F is conjugated to
R j

m and pj + qm = 1, then F p is conjugated to Rm and F = (F p) j .
For i = 1, . . . , m, denote the rays starting at the origin by

Ki :=
{

r

(
cos

2(i − 1)π

m
, sin

2(i − 1)π

m

)
: r � 0

}
.

Then we consider Am = �m
i=1 Ki and we call it the m-star. This m-star is a sort of skeleton

of our map and the strategy to prove Theorem A will be developped in three steps, in each
of them we conjugate F with a map having a contact with the linear map R near Am , where
R = Rm when m > 2, and R ∈ {R2, S}, when m = 2. The order of this contact is improved
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in each step. More concretely, we prove that the m-periodic Ck-map F is Ck-conjugated with
some new m-periodic maps G1, G2 and G3 having Am as invariant set and satisfying:

(i) first step: G1|Am�U = R, where U is a neighbourhood of the origin;

(ii) Second step: G2|Am�U = R and d(G2)|Am�U = R, where U is a neighbourhood of the
origin;

(iii) Third step: G3|V = R, where V is a neighbourhood of Am .

Finally the Ck-conjugation between G3 and R is easily constructed by gluing certain dif-
feomorphisms defined on the open sectors of R

2 \ Am . As we will see, the resulting map is
smooth precisely because G3 coincides with R in a neighbourhood of Am . In the previous
discussion we have unified the cases of maps preserving or reversing orientation but many
times in the course of the proof it will be convenient to study them separately.

The rest of the paper is divided in six sections and an appendix. Some applications of
Theorem A are presented in Section 2. In Section 3 we collect some known results which
will become useful tools later. In particular we state the so-called Smoothing Theorem, that
allows to modify a piecewise smooth homeomorphism in order to produce a diffeomorph-
ism. This result is proved in Hirsch’s book [9] in the C∞ context. We will also need some
refinements and a Ck version with k < ∞. The proof is substantially different in these cases
and we have included all the details in the Appendix. The tools introduced by Munkres in his
book [17] will be crucial. The next three sections of the paper are devoted to prove each of
the steps of the proof we described above. The last section of the paper contains the proofs
of the results stated in Section 2.

Throughout the paper k takes any value in {1, 2, . . . , ∞} and all diffeomorphisms are of
class Ck .

2. Some consequences of Theorem A

Recall that linear Floquet theory allows to transform non-autonomous T -periodic linear
differential equations x ′ = A(t)x into autonomous linear differential equations y′ = By, by
using a T -periodic non-autonomous change of variables. As a first application of Theorem A
we state the following result that can be interpreted as a Floquet type result for nonlinear
equations, see Section 7·1 for a proof.

COROLLARY 2·1. Let X : R × R
2 → R

2 be a time dependent C∞-vector field such that
X (t + T, x) = X (t, x) for all (t, x) ∈ R × R

2. Assume that every solution of

dx

dt
= X (t, x) (2·1)

is periodic with a period rationally dependent with T . Then there exists a C∞, T -periodic
time dependent change of variables that transforms (2·1) into the linear differential system
ẏ = 2nπ

mT Ay where

A =
(

0 1
−1 0

)
and n, m ∈ N. In particular all orbits have a common period mT .

By a change of variables x = ψ(t, y) we understand a C∞-map ψ : R×R
2 → R

2 satisfying
ψ(t + T, y) = ψ(t, y) and such that ψ(t, ·) is a C∞-diffeomorphism of R

2.
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The above result does not seem to have a direct extension valid for arbitrary dimensions.
In Section 7·1 we will construct a C∞ vector field, X : R × R

7 → R
7 which is T -periodic

in t and such that all the solutions of (2·1) are periodic with period 15T but none of them
has period T . In this case there is no change of variables x = ψ(t, y) transforming (2·1) to
a linear system y′ = Ly in R

7, for otherwise the solution x(t) = ψ(t, 0) should have period
T . We do not know if the above Theorem admits an extension to some higher dimension d
with 3 � d � 6.

As a second application we study a class of stable fixed points for analytic area preserving
maps that reverse orientation. Let D be an open and connected subset of the plane and let
h : D ⊂ R

2 → R
2 be a real analytic map satisfying

det h′(x) = −1 for each x ∈ D. (2·2)

This condition implies that our map is a local diffeomorphism preserving area and reversing
orientation.

A fixed point x∗ = h(x∗) is called stable if given any neighbourhood U there exists another
neighbourhood V such that all forward iterates hn(V), n � 0, are well defined and contained
in U . As an example consider the symmetry S : R

2 → R
2, S(x1, x2) = (x1, −x2) having the

origin x∗ = 0 as a stable fixed point. It was proved in [19] that this is essentially the only
possible example. This means that any map in the above conditions and having a stable fixed
point must be conjugate to S. The proof in [19] was based on Kerékjártó theorem and so the
conjugacy was realized via homeomorphisms. Now we can improve the conclusion in [19]
using our main result.

COROLLARY 2·2. Assume that h : D ⊂ R
2 → R

2 is a real analytic map satisfying the
condition (2·2) and having a stable fixed point x∗. Then there exist an invariant neighbor-
hood W ⊂ D of x∗ and a C∞-diffeomorphism ψ : W → R

2 such that ψ ◦ h = S ◦ ψ in W .
Moreover, if D = R

2 then we can take W = R
2.

Again we refer to Section 7·1 for a proof. We do not know if the map ψ can be chosen as
an analytic real diffeomorphism. Also, it is convenient to notice that the result in [19] was
stated in a slightly more restricted framework. There it was assumed that D = R

2 and h was
a real analytic diffeomorphism of the whole plane.

3. Some preliminary results

We start stating three preliminary results. The first one asserts that under some quite gen-
eral hypotheses a local diffeomorphism can be extended to be a global diffeomorphism, see
[20, 21] and [16] for M = R

n .

THEOREM 3·1. Let M be a differentiable manifold and let g : V → g(V) ⊂ M be a
diffeomorphism defined on a neighbourhood V of a point p ∈ M. Assume that one one of
the following hypotheses hold:
(i) the manifold M is orientable and admits some global diffeomorphism that reverses ori-

entation;
(ii) the manifold M is orientable and does not admit global reversing orientation diffeo-

morphisms and g preserves orientation;
(iii) the manifold M is non-orientable.
Then there exists a diffeomorphism f : M → M such that f |W = g|W for some neighbour-
hood W ⊂ V of p.
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Fig. 1. (Colour online) An illustration of the assumptions of Theorem 3·2 (b).

The second result is the one we talked about in the introduction. Part (a) is given in [9]
for C∞-manifolds. Here we state a slightly modified version of the theorem for Ck-manifolds
that is proved in the appendix.

THEOREM 3·2. (a) Let W0 and W1 be two manifolds without boundary of dimension n
and assume that they can be decomposed in the form Wi = Mi � Ni , i = 0, 1, where Mi

and Ni are closed n-dimensional sub-manifolds satisfying

Mi � Ni = ∂ Mi = ∂ Ni = Vi .

In addition assume that h : W0 → W1 is a homeomorphism mapping Ck-diffeormophically
M0 onto M1 and N0 onto N1. Then there exists a Ck-diffeomorphism f : W0 → W1 such that

f (M0) = M1, f (N0) = N1 and f = h on V0.

Moreover f can be chosen in such a way that it coincides with h outside a given neighbour-
hood of V0.

(b) In addition assume that G is an open subset of W0 such that h is a Ck-diffeomorphism
from G onto h(G). Let E be another open subset of W0 having a clean crossing with V0

and a compact closure cl(E) contained in G. Then f can be constructed with the additional
property f = h on E .

Notice that part (b) essentially says that when h is smooth on some subset G of V0, then
it is not necessary to modify h inside some prescribed compact region contained in G. The
above statement is incomplete because we have not defined the meaning of the term clean
crossing. Given an open subset E of W0, we say that E has a clean crossing with V0 if there
exist two sets U (open subset of W0 with V0 ⊂ U) and E ⊂ V0 (open in the relative topology)
and a Ck-diffeomorphism p : U → V0×] − 1, 1[ satisfying

p(x) = (x, 0), if x ∈ V0, U � E = p−1(E×] − 1, 1[).
To illustrate this definition we consider an example which will play a role later. Assume that
W0 = R

2 \ {0} and V0 = (K1 � · · · � Km) \ {0} is the punctured m-star with m even. The
manifold W0 is decomposed as the union of M0 and N0, where M0 is the union of the angular
sectors determined by the rays K1 and K2, K3 and K4 and so forth while the manifold N0

has sectors determined by K2 and K3, K4 and K5 ... It is easy to prove that any annulus
E = {z ∈ R

2 : δ < |z| < �} with 0 < δ < � has a clean crossing with V0.
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The third result is a direct corollary of the natural generalization for non-compact Ck-
surfaces of the theorem of classification of C∞-compact surfaces given in [9].

THEOREM 3·3. Let M be a simply connected and non-compact Ck-surface such that ∂ M
is connected and non-empty. Then M is Ck-diffeomorphic to H = {(x, y) ∈ R

2 : x � 1}.
The following semi-local version of the inverse function theorem will be used several

times throughout the paper.

THEOREM 3·4. Assume that W0 and W1 are Ck manifolds of the same dimension, A ⊂
W0 is a closed set, U is an open neighbourhood of A and g : U → W1 is a Ck-map. Assume
that g|A is an homeomorphism between A and g(A) and det(d(g))x � 0 for each x ∈ A.
Then there exists an open set V ⊂ W0 such that A ⊂ V ⊂ U and g : V → g(V) is a
Ck-diffeomorphism.

This result can be obtained as a direct consequence of a beatiful topological result due to
Munkres ([17, lemma 5·7]):

THEOREM 3·5. Assume that X and Y are separable metric spaces and X is locally com-
pact. Let A ⊂ X be a closed set and let g : X → Y be a continuous map whose restriction
becomes a homeomorphism between A and g(A). In addition, for each point x of A there
is an open neighbourhood which is mapped homeomorphically by g onto an open subset
of Y . Then there exists an open set V such that A ⊂ V ⊂ U and g : V → g(V) is a
homeomorphism.

To deal with the first step of our proof we also need to prove the following improvement
of [4, theorem 2·4].

LEMMA 3·6. Let C be a closed, connected and non-compact Ck-submanifold of R
2. Then

there exists a diffeomorphism ϕ : R
2 → R

2 such that ϕ(C) = {0} × R. Moreover, assume
that C is such that there exists a global Ck-parametrisation γ : R → R

2 of C such that
γ (y) = (0, y) for all y ∈ (−a, a), where a > 0. Then ϕ can be chosen such that ϕ|V = Id
for some neighbourhood V of the origin.

By a closed, connected and non-compact Ck-submanifold of R
2 we mean a Ck curve which

is unbounded and closed as a subset of R
2. With some work it can be proved that these

curves can be characterized by the existence of a Ck bijective parametrisation γ : R → C
with γ ′(t)�0 for each t ∈ R and lim|t |→∞ ‖γ (t)‖ = ∞.

Proof. The first statement is proved in [4, theorem 2·4] for the case k = 1. The result in
the general case follows by the same arguments and using Theorems 3·2 and 3·3 instead of
their corresponding C1 versions.

We look now for the second statement. Consider the orthogonal unitary vector field given
by X (γ (t)) = N (γ ′(t)/‖γ ′(t)‖) where N (x, y) = (y, −x). Then X is a Ck−1- vector field
transversal to the curve C. Let Y be a unitary Ck-vector field transversal to the curve C
obtained by perturbing X. We can choose Y in such a way Y (0, y) = (1, 0) for all y ∈
(−b, b) and 0 < b < a. We are going to define a map π : R

2 → R
2, π(s, t) = (x, y),

extending the parameterisation t �→ γ (t). More precisely

π(s, t) = γ (t) + sY (γ (t)).

This is a Ck map and we will prove that it is also an embedding when it is restricted to an
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π
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B

Fig. 2. (Colour online) Ck -diffeomorphisms, π : B → π(B), ψ : E → E ′.

appropriate neighbourhood of s = 0. This will be our first opportunity to apply Theorem
3·4. Set M = R

2 and A = {0} × R, then the restriction of π to A is a homeomorphism
onto the curve C . Moreover the differential along A can be expressed as a 2 × 2 matrix with
columns

d(π)(0, t) = (Y (γ (t))|γ̇ (t))

and the transversality of Y and C implies that the corresponding determinant does not vanish.
Then we find an open set W ⊂ R

2 such that {0} × R ⊂ W and π : W −→ π(W) is a
Ck-diffeomorphism. Now we choose a Ck-map σ : R → (0, 1) such that

B = {(s, t) ∈ R
2 : |s| < σ(t)}

is contained in W . We will work with the restricted diffeomorphism π : B → π(B). It
satisfies

π(0, t) = γ (t) if t ∈ R and π(s, t) = (s, t) if |t | < b, |s| < σ(t).

Set E = {(s, t) ∈ R
2 : s � σ(t)/2} and denote by J = {(s, t) ∈ R

2 : s = σ(t)/2}
which is a closed Ck-submanifold of R

2 contained in B. Since π is a diffeomorphism
it follows that π(J ) is also a Ck submanifold of R

2, parameterised by �(t) = γ (t) +
(σ (t)/2)Y (γ (t)). Since ‖γ (t)‖ → ∞ as |t | → ∞, we also have that ‖�(t)‖ → ∞
and so π(J ) is a closed subset of R

2. The set π(J ) � {∞} is a Jordan curve lying inside
S

2 = R
2 � {∞}, then it divides the plane in two connected components. The curves {0} × R

and J are disjoint and the same holds for the images under π , C and π(J ). Let D be the
connected component that does not intersect C and set E ′ = D � π(J ). From Theorem 3·3
it follows that both E ′ and E are both Ck-diffeomorphic to H = {(x, y) ∈ R

2 : x � 1}.
Therefore they are Ck-diffeomorphic. Let ψ : E → E ′ be a Ck-diffeomorphism between
them. Then ψ(J ) = π(J ). Now we want to modify ψ in such a way that the new map
coincides with π on J .

To do this consider the map � : J → J defined as

�(z) = ψ−1(π(z))

which is a diffeomorphism. Therefore there exists a diffeomorphism g : R → R such that
�(σ(t)/2, t) = (σ (g(t))/2, g(t)) . Thus the map � : E → E given by

�(s, t) =
(

s + σ(g(t)) − σ(t)

2
, g(t)

)
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is a diffeomorphism and it satisfies that �|J = �. This map is obtained as � = ψ−1 ◦ G ◦ψ

where G(s, t) = (s, g(t)) and ψ(s, t) = (s − σ(t)/2, t). The composition h+ = ψ ◦ � :
E → E ′ is a diffeomorphism that satisfies (ψ ◦ �)|J = π |J .

In a symmetric way we construct a diffeomorphism h− : E∗ → E ′
∗ where E∗ = {(s, t) ∈

R
2 : s � −σ(t)/2}, E ′

∗ = D∗ � π(J∗), J∗ is the line of equation s = −σ(t)/2 and D∗ is
the component of R

2 \ π(J∗) which does not contain C . It satisfies h− = π on J∗.
Lastly set h : R

2 → R
2 given by

h =
⎧⎨⎩

h+, on E
π, on B
h−, on E∗ .

It is a homeomorphism in the conditions of Theorem 3·2 with W0 = W1 = R
2, V0 = J � J∗,

M0 = E � E∗, N0 = B. Therefore we can find a Ck diffeomorphism  : R
2 → R

2 which
coincides with h outside a prescribed neighbourhood of V0. This neighbourhood can be
chosen so that its closure is disjoint with the line {0} × R. Then  = π on a neighbourhood
of the vertical axis. In particular  equals the identity on a neighbourhood of the segment
{0} × [−b, b]. Thus −1 is the desired diffeomorphism.

Remark 3·7. Notice that if C1 and C2 are closed and non compact submanifolds and γ1, γ2

are parametrisations of C1 and C2 satisfying γ1(s) = γ2(s) for all s ∈ J , J open subset of
R, then the difeomorphisms ϕ1 and ϕ2 obtained in the above Lemma can be chosen so that
they coincide in a neighbourhood of γ1(J ).

Finally we recall the classical Montgomery–Bochner theorem ([15]).

THEOREM 3·8. (Montgomery–Bochner theorem). Let U ⊂ R
n be an open set and let

F : U → U be a class Ck, k � 1, m-periodic map, having a fixed point p ∈ U and let
L = d(F)p be the differential of F at p. Then the map ψ = 1

m

∑m−1
i=0 L−i ◦ Fi conjugates

F and L in a neighbourhood of p.

Nowadays the above map ψ is called the Montgomery–Bochner transformation. It can
be seen it is not necessarily a global conjugation, see for instance [3]. It may be convenient
to be precise on the meaning of the local conjugacy in the above result. Indeed the identity
ψ ◦ F = L ◦ ψ holds everywhere but ψ is a diffeomorphism from V onto ψ(V), where V is
a neighborhood of the origin which can be chosen invariant under F .

4. First step: conjugacy with a map having the m-star fixed

The aim of this section is to prove the following proposition, that in the orientation pre-
serving case allows to linearise F on the m-star and near the origin.

PROPOSITION 4·1. Let F : R
2 → R

2 be a m-periodic Ck-map which is C0-conjugate
to Rm. Then F is Ck-conjugate to a map G : R

2 → R
2 that has Am as invariant set and

satisfies G = Rm on Am � U , where U is some neighbourhood of the origin.

Proof. It is divided in four steps.
Step 1. There exists a map F̃ : R

2 → R
2 which is Ck-conjugate to F and coincides with Rm

on some neighbourhood of the origin.
By assumption F and Rm are topologically conjugate and so F has a unique fixed point.

Moreover we know by Theorem 3·8 that F is locally conjugate (in Ck) to its linear part L .
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Hence Rm and L are also locally conjugate (in Ck) and, being linear, they are conjugate in
the linear sense. After a linear change of variables we can assume L = Rm . Let ϕ : W → R

2

be a Ck-map that conjugates F to Rm in a neighbourhood W of p. From Theorem 3·1 the
embedding ϕ can be extended to be a global diffeomorphism π : R

2 → R
2 such that

π |V = ϕ|V for some neighbourhood V ⊂ W of p. Since F is topologically conjugate to Rm

we can select V so that F(V) = V . Consider now F̃ = π ◦ F ◦ π−1. The map F̃ has 0 as a
fixed point and in the neighbourhood of the origin π(V), F̃ is exactly Rm .

Next we introduce some topological notions that will play a role in the second step. An
arc γ from 0 to ∞ is the image of a continuous and one-to-one map f : [0, ∞) → R

2

satisfying f (0) = 0 and limt→∞ ‖ f (t)‖ = ∞. Given two arcs γ1 and γ2 with γ1 � γ2 = {0},
the set γ1 � γ2 � {∞} is a Jordan curve lying in S

2 = R
2 � {∞} and Schonflies theorem

implies that R
2 \ (γ1 � γ2) has two connected components, both homeomorphic to the open

disk.
A topological m-star A = �m

i=1Ki will be composed by m arcs Ki from 0 to ∞ satisfying
Ki �K j = {0} if i� j , R

2 \A has m components and the component Bi is characterized by
two properties: its boundary is the union of Ki and Ki+1 and the remaining arcs are disjoint
with Bi . In practice we will simply say that A is a star while Am will be distinguished as the
standard star.
Step 2. There exists a star L = �m

i=1 Li satisfying:

(i) L � B = Am � B for some closed ball B centered at the origin;
(ii) L \ {0} is a Ck manifold;

(iii) Li = F̃ (i−1)(L1), i = 2, . . . , m.

Let ψ : R
2 → R

2 be the homeomorphism such that ψ−1 ◦ F̃ ◦ψ = Rm . Consider the m-star
Am and let L := ψ(Am) = �m

i=1ψ(Ki). Then L is a star invariant under F̃ . Furthermore, if
we denote by K̃i := ψ(Ki ) we get that K̃i = F̃ i(K̃0). This is not the star we are looking
for since it is probably non smooth and we do not have any information around the origin.
For this reason we are going to rearrange the rays K̃i . To this end, let b > 0 be such that
the closed ball Bb(0) ⊂ π(V). Consider the the last point of K̃1 meeting Bb(0). Here the
orientation of the arc K̃1 going from 0 to ∞ has been selected. In principle this point can be
anywhere on the circumference of radius b but, after rotating the coordinate system, we can
assume that it is precisely the point (b, 0).

Let us do some surgery: we remove from K̃1 the arc between the origin and (b, 0) and
substitute it by the segment joining these two points. We denote the obtained arc by L ′

1

and by L ′
i := F̃ (i−1)(L ′

1). Now the set L ′ := �m
i=1L ′

i is again a star invariant under F̃ and
L ′ � Bb(0) = Am � Bb(0). This is not yet the searched star because it is not necessarily
smooth. Denote by B ′

1 the connected component of R
2 \ L ′ adjacent to L ′

1 and L ′
2. This

set can be seen as one of the connected components of S
2 \ � where � is the Jordan curve

composed by the two arcs and the point of infinity. In consequence ∞ is accessible from B ′
1

and we can find an arc L1 = f ([0, ∞)) joining 0 and ∞ satisfying the following properties:
(i) f (t) = (t, 0) if t � b/2;

(ii) f (t) ∈ B ′
1 and ‖ f (t)‖ > b/2 for all t > b/2;

(iii) f is Ck and f ′(t)�0 for all t � 0.
Defining L := �m

i=1 F̃ i(L1) we have the searched star.
Step 3. There exists a map G : R

2 → R
2 satisfying:

(i) G is Ck conjugated to F̃ ;

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004118000336
Downloaded from https://www.cambridge.org/core. Universitat Autonoma de Barcelona, on 28 Aug 2019 at 11:05:36, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004118000336
https://www.cambridge.org/core


304 A. CIMA, A. GASULL, F. MAÑOSAS AND R. ORTEGA

H
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α

T
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1B

Fig. 3. Construction of ψ1 := H−1 ◦ h ◦ H to regularise one sector of the topological star L .

(ii) G = Rm in a neighbourhood of the origin;
(iii) G(Ki ) = Ki+1, i = 1, . . . , m where Ki are the rays of the standard star Am .

To do this let g : R → R be a degree one Ck-map, (i.e. g(θ +2π) = g(θ)+2π)) such that
g(0) = −π/2, g(2π/m) = π/2 and g′(x) > 0 for all x ∈ R. Then the map H : R

2 → R
2

which in polar coordinates is given by H(r, θ) = (r, g(θ)) is a homeomorphism of R
2 and

the restriction to R
2 \ {(0, 0)} is a diffeomorphism.

Consider now T = H(L1 � L2) � {(0, 0)} which is a Ck-closed submanifold. Now we
are in the conditions of Lemma 3·6 and we get a diffeomorphism h : R

2 → R
2 verifying

h(T ) = {0} × R and h|V = Id in some neighbourhood V of the origin, see Figure 3. Thus
the map ψ1 := H−1 ◦ h ◦ H is a diffeomorphism on R

2 \ {(0, 0)} and a homeomorphism on
R

2. Furthermore, since it is the identity in a neighbourhood of the origin, we conclude that
ψ1 is a diffeomorphism of R

2.

In addition it has the following properties:

ψ1(L1) = K1 , ψ1(L2) = K2 and ψ1(B1) = B1,

where we denote by Bi the connected component of R
2 \ Am adjacent to Ki and Ki+1.

Doing a similar process we obtain a diffeomorphism ψ̃2 : R
2 → R

2 such that it is the
identity in a neighbourhood of the origin, and

ψ̃2(L2) = K2 , ψ̃2(L3) = K3 and ψ̃2(B2) = B2.

Now we want to modify ψ̃2 in such a way that it coincides with ψ1 at L2. Since ψ1(L2) =
ψ̃2(L2) = K2 the map p2 := ψ1 ◦ ψ̃−1

2 : K2 → K2 is given by an one dimensional
diffeomorphism which is the identity near of the origin. Thus we can consider the map
p̃2 : R

2 → R
2 that in polar coordinates is given by p̃2(r, θ) = (p2(r), θ). Since p2 is a

diffeomorphism that begins being the identity, it follows that p̃2 is a diffeomorphism of R
2

that is the identity in a neighbourhood of the origin. Now consider ψ2 := p̃2 ◦ ψ̃2. Then ψ2

is a diffeomorphism such that it is the identity in a neighbourhood of the origin, maps Li

onto Ki for i = 2, 3, ψ2(B2) = B2 and coincides with ψ1 on L2. Proceeding in this way
we obtain diffeomorphisms ψ1, ψ2, . . . , ψm−1.

To construct a diffeomorphism ψm such that ψm(Bm) = Bm, ψm |Lm
= ψm−1|Lm

and
ψm |L1

= ψ1|L1
we proceed in a slightly different way. First we construct ψ̃m : R

2 → R
2 in

an analogous way as ψ̃2 was constructed. After that the map pm := ψm−1 ◦ ψ̃−1
m : Km → Km

is a diffeomorphism that begins with the identity. In a similar way the map p1 := ψ1 ◦ ψ̃−1
m :

K1 → K1 has the same property. Thus we define p̃m : R
2 → R

2 that in polar coordinates is
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given by

p̃m(r, θ) = (a(θ)pm(r) + (1 − a(θ)) p1(r), θ) with a(0) = 0, a

(
2(m − 1)π

m

)
= 1,

where a : R → [0, 1] is a 2π-periodic function in Ck . Since both p1 and pm begin with the
identity we get that for r small enough p̃m(r, θ) = (r, θ). Thus p̃m is also a diffeomorphisms
of R

2 that is the identity in a neighbourhood of the origin. Lastly we define ψm = p̃m ◦ ψ̃m

that has the desired properties.
Now let ϕ̃ : R

2 → R
2 defined by ϕ̃(z) = ψi (z) when z ∈ Bi � Li � Li+1. Thus ϕ̃ is an

homeomorphism that restricted to each piece Bi �Li �Li+1\{(0, 0)} is a diffeomorphism and
is the identity near the origin. Thus we can apply parts (a) and (b) of Theorem 3·2 to obtain a
diffeomorphism φ : R

2 → R
2 that is the identity near the origin and φ(L) = Am . Therefore

the map G = φ ◦ F̃ ◦ φ−1 is obviously Ck-conjugated to F̃, has Am = φ(L) as invariant set
and near the origin coincides with Rm . It is perhaps worth to give more details on the way
Theorem 3·2 is applied to construct φ. When m is even we take W0 = W1 = R

2 \ {0}, V0 =
Am \{0}, V1 = L \{0}, M0 = �i odd Bi , N0 = �i even Bi . The set G is any open neighbourhood
of the origin where ϕ̃ equals the identity and E is an annulus 0 < r < |z| < R whose closure
is contained in G. We observe that the map given by the Theorem can be modified in the disk
|z| � r in order to get a diffeomorphism which coincides with identity in a neigbourhood of
the origin. When m is odd we must proceed in two steps. First we apply the Theorem with
W0 = B1 � B2 � (L2 \ {0}), V0 = L1 and then we apply it again with W0 = R

2 \ {0} and
V0 = L1 � L3 � · · · � Lm .
Step 4. Conclusion.

To finish the proof of the proposition we only need to conjugate in Ck the map G to a
map G preserving the properties of G and additionally satisfying that G = Rm on Ki for all
i = 0, 1, . . . , m − 1.

We start with a modification of G satisfying this condition on K1. Since G(K1) = K2 the
map G|K1 is given in polar coordinates by G(r, 0) = (

f (r), 2π
m

)
for some diffeomorphism f

of [0, ∞) that is the identity for r small enough. Thus as in the previous reduction we now
consider the map that in polar coordinates writes as �(r, θ) = (b(θ) f (r) + (1 − b(θ))r, θ)

where b : R → [0, 1] is a 2π-periodic function in Ck satisfying

b(0) = 0, b

(
2π

m

)
= 1 and b

(
2π i

m

)
= 0, i = 2, 3, . . . , m − 1.

Then the map G = �−1 ◦ G ◦ � satisfies G(r, 0) = (r, 2π/m) . Hence G satisfies all the
required properties on K1 and does not change the map on Ki , i � 1. In a similar way we
can continue the procedure arranging G on the remaining rays. Note that in the penultimate
step we already know that G = Rm on Am \ Km . Then, we do not need to impose G = Rm

on Km because this is a direct consequence of Gm = Id. This identity holds because G and
Rm are conjugate.

5. Second step: smooth matching with Rm on the m-star

The main result of this section is the following proposition. Notice that it only deals with
the orientation preserving case and allows to obtain a map, Ck-conjugated to F and that has
a C1-contact with Rm on the m-star Am . Remember that in Proposition 4·1 the contact was
only of class C0.
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PROPOSITION 5·1. Let F : R
2 → R

2 be a m-periodic Ck-map, C0-conjugate to Rm . Then
F is Ck-conjugate to a m-periodic map G that has Am as invariant set and satisfies G = Rm

on Am � U , for some neighbourhood U of the origin, and moreover d(G)(x,y) = Rm for each
(x, y) ∈ Am.

To prove it we will use the following result, already given for the case k = 1 in [4, lemma
2·3]. The proof for the general case follows exactly the same arguments as in that paper, by
using Theorems 3·2 and 3·3 instead of their corresponding C1 versions.

LEMMA 5·2. Let D ⊂ R
2 be an open and simply connected set such that {0} × R ⊂ D.

Then there exist an open set V such that {0} × R ⊂ V ⊂ D and a diffeomorphism ψ : D →
R

2 such that ψ |V = Id .

COROLLARY 5·3. Let C be a closed and non-compact Ck-submanifold of R
2, U an open

neighbourhood of C and g : U → R
2 such that g is a diffeomorphism onto its image and

g(C) is closed in R
2. Then there exists a diffeomorphism ψ : R

2 → R
2 such that ψ |V = g|V

for some open neighbourhood Vof C contained in U .

Proof. Without loss of generality we can assume that U is simply connected. Let ϕ1, ϕ2 :
R

2 → R
2 be the diffeomorphisms given by Lemma 3·6 such that ϕ1(C) = ϕ2(g(C)) =

{0} × R. Applying Lemma 5·2 to ϕ1(U) and ϕ2(g(U)) we obtain diffeomorphisms ψ1 :
ϕ1(U) → R

2 and ψ2 : ϕ2(g(U)) → R
2 that are the identity in suitable neighbourhoods of

{0} × R. Therefore we obtain the desired diffeomorphism by considering ϕ−1
2 ◦ ψ2 ◦ ϕ2 ◦ g ◦

ϕ−1
1 ◦ ψ−1

1 ◦ ϕ1.

Next result also plays a key role in our approach. From now on, GL2(R) will denote the
group of linear automorphisms of R

2.

THEOREM 5·4. Let C ⊂ R
2 be a closed and non compact Ck-submanifold. Let γ : R →

C be a Ck-parametrisation of C (in particular γ ′�0 everywhere) and ψ : R → GL2(R) a
Ck−1 map satisfying that

ψ(y)(γ ′(y)) = γ ′(y) for all y ∈ R.

Then there exists a diffeomorphism  : R
2 → R

2 such that

|C = Id and d()γ (y) = ψ(y) for all y ∈ R.

If in addition ψ(y) = Id for all y ∈ J , J open subset of R, then  can be chosen in such a
way that |V = Id in some neighbourhood V of γ (J ).

Proof. First we prove the result in the case that C = {0} × R and γ (y) = (0, y). In this
situation

ψ(y) =
(

A(y) 0
B(y) 1

)
,

for some A, B : R → R, Ck−1-maps with A(y) � 0 for all y ∈ R. Now consider the map
H : R

2 → R
2 given by

H(x, y) =
(∫ y+x

y
A(s)ds, y +

∫ y+x

y
B(s)ds

)
.

Clearly the map H is of class Ck, H(0, y) = (0, y) and d(H)(0,y) =
(

A(y) 0
B(y) 1

)
. Since
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det(d(H)(0,y)

) = A(y) � 0 we can apply Corollary 3·4 and we obtain that H |U is a
diffeomorphism for a certain neighbourhood U of {0} × R that we can choose simply con-
nected. Now the result follows by applying Corollary 5·3 to {0} × R and H |U . Observe
that if ψ(y) = Id for all y ∈ J then A(y) = 1 and B(y) = 0 for all y ∈ J and therefore
H(x, y) = (x, y) in a suitable neighbourhood of {0}× J. This ends the proof of the Theorem
in this case.

Now we turn to the general case. From Lemma 3·6 there exists a diffeomorphism π :
R

2 → R
2 such that π({0} × R) = C . After some modifications following previous ideas we

can even assume that π(0, y) = γ (y). Then consider the Ck−1 map � : R → GL2(R) given
by

�(y) = d(π−1)π(0,y) ◦ ψ(y) ◦ d(π)(0,y).

By differentiating the identity π(0, y) = γ (y) we get that ty = d(π)(0,y)((0, 1)) =
γ ′(y) is a tangent vector to C at the point π(0, y) = γ (y). Moreover, by hypothesis,
ψ(y)(γ ′(y)) = γ ′(y). Therefore we get:

�(y)(0, 1) = d(π−1)π(0,y)(ψ(y)(d(π)(0,y)))(0, 1) = d(π−1)π(0,y)(ty) = (0, 1).

Thus we obtain a diffeomorphism ̃ : R
2 → R

2 such that ̃|{0}×R = Id and d(̃)(0,y) =
�(y). Now the result follows by considering  = π ◦ ̃ ◦ π−1.

Remark 5·5. Notice that if C1, γ1, ψ1 and C2, γ2, ψ2 satisfy the hypotheses of the theorem
and, for some open subset J of R, γ1(t) = γ2(t) and ψ1(t) = ψ2(t) for all t ∈ J then the
diffeomorphisms 1 and 2 obtained in the above theorem coincide in a neighbourhood of
γ1(J ). The proof of this assertion combines Remark 3·7 with the previous proof. In particular
the following observation plays a role: ψ1 = ψ2 on J implies that A1 = A2, B1 = B2 on the
same set J .

Assume now that in addition to the previous conditions on γ1 and γ2, ψ1 and ψ2, we know
that ψ1(t) = Id if t ∈ J∗, where J∗ is an open subset of R. Then we can construct 1

and 2 satisfying simultaneously 1 = 2 in a neighbourhood of γ1(J ) and 1 = Id in a
neighbourhood of γ1(J∗).

Now we are ready to go ahead with the second step in the proof of Theorem A.

Proof of Proposition 5·1. From Proposition 4·1 we can assume that F satisfies all re-
quired properties except that d(F)(x,y) = Rm if (x, y) ∈ Am . Denote by GL2(R)∗ be
the subgroup of GL2(R) of the automorphisms having (1, 0) as an eigenvector of eigen-
value 1. We recall that α = 2π/m and define the vectors vi = (cos iα, sin iα) for each
i ∈ {0, . . . , m − 1}. From F = Rm on Am we get that R−1

m F(xvi) = xvi for each x > 0 and
differentiating this identity,

d(R−1
m ◦ F)xvi (vi) = vi .

Since vi = Ri
m(1, 0) we obtain

(R−(i+1)
m ◦ d(F)xvi ◦ Ri

m)(1, 0) = (1, 0).

For each i = 0, 1, . . . , m − 1 we define �i (x) as the matrix

�i(x) := R−(i+1)
m ◦ d(F)xvi ◦ Ri

m .

Then �i (x) ∈ GL2(R)∗ and

d(F)xvi = R(i+1)
m ◦ �i (x) ◦ R−i

m .
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We claim that the automorphisms �i satisfy:
(i) �i (x) = Id for x small enough; and

(ii) �m−1(x) ◦ . . . ◦ �1(x) ◦ �0(x) = Id for all x > 0.
Statement (i) follows from the fact that F = Rm in a neighbourhood of the origin. To
prove (ii) we see that

Id = d(Fm)xv0 = d(F)xvm−1 ◦ · · · ◦ d(F)xv1 ◦ d(F)xv0 = �m−1(x) ◦ · · · ◦ �1(x) ◦ �0(x).

This ends the proof of the claim.
Now we look for a diffeomorphism ϕ satisfying that ϕ|Am = Id, d(ϕ−1 ◦ F ◦ϕ)|Am = Rm

and ϕ|U = Id for a certain neighbourhood U of the origin. Direct computations show that if
such diffeomorphism exists it must satisfy

d(ϕ)xvi+1 = d(F)xvi ◦ d(ϕ)xvi ◦ R−1
m .

Thus choosing d(ϕ)xv0 = Id, we obtain inductively

d(ϕ)xvi = Ri
m ◦ �i−1(x) ◦ . . . ◦ �1(x) ◦ �0(x) ◦ R−i

m . (5·1)

To obtain such a diffeomorphism we proceed as follows. If we denote by Bk the con-
nected component of R

2 \ Am adjacent to the rays Kk and Kk+1 we want to construct a
diffeomorphism ϕk defined in a neighbourhood of Bk that sends Bk onto itself, is the identity
in a neighbourhood of the origin and satisfies equation (5·1) for i = k. Moreover we want
that ϕk and ϕk+1 coincide in a neighbourhood of Kk+1. We will see that we will obtain the
desired difeomorphism ϕ by gluing the corresponding diffeomorphisms ϕk |Bk .

Let us start the construction of ϕ. Let r be small enough such that F |Br (0) = Rm, K i :=
Ki �

(
R

2 \ Br/2(0)
)

and let γi be a compact Ck-arc joining the points r
2vi−1 and r

2vi and such
that the open arc is contained in Bi � Br/2(0) and the curve Di := K i � γi � K i+1 is Ck .

Now we have that D1 is a closed and non-compact Ck-submanifold. We parametrise it by
the map l1 : R → R

2 given by:

l1(x) =
⎧⎨⎩

−xv0 if x � −r/2;
δ1(x), if x ∈ [−r/2, r/2];
xv1 if x � r/2,

where δ1 : [−r/2, r/2] → R
2 is a Ck-parametrisation of γ1 chosen such that l1 is also a

Ck-parametrisation.
Consider the Ck−1 map �1 : R → GL2(R) given by

�1(x) =
{

Id, if x � r/2;
Rm ◦ �0(x) ◦ R−1

m , if x � r/2.

Now we can apply Theorem 5·4 with C = D1, γ = l1 and ψ = �1. Thus we obtain a
difeomorphism

ϕ1 : R
2 → R

2 such that ϕ1|D1 = Id and d(ϕ1)l1(x) = �1(x).

Moreover since �1(x) = Id for all x < r we get that ϕ1 is the identity in a neighbourhood
of K 1 � γ1, see Figure 4.

In a similar way can parametrise D2 by l2 : R → R
2 given by

l2(x) =
⎧⎨⎩

−xv2 if x � −r/2;
δ2(x), if x ∈ [−r/2, r/2];
xv1 if x � r/2,
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Fig. 4. (Colour online) The Ck -diffeomorphisms ϕ1 and ϕ2 are defined in such a way that coincide on an
open neighbourhood of the common boundary between D1 and D2 and are the identity in a neighbourhood
of the ball of radius r/2.

and consider the Ck−1 map �2 : R → GL2(R) given by

�2(x) =
⎧⎨⎩

R2
m ◦ �1(x) ◦ �0(x) ◦ R−2

m , if x � −r/2;
Id, if x ∈ [−r/2, r/2];
Rm ◦ �0(x) ◦ R−1

m , if x � r/2.

Applying again Theorem 5·4 with C = D2, γ = l2 and ψ = �2 we obtain a diffeo-
morphism

ϕ2 : R
2 −→ R

2 such that ϕ2|D2 = Id and d(ϕ2)l2(x) = �2(x).

Moreover, as on the first sector, since �2(x) = Id for all x ∈] − r, r [ we get that ϕ2 is the
identity in a neighbourhood of γ2. Lastly since the parametrisation of K 2 given by l1 and l2

coincide, and �1(x) = �2(x) when x ∈ K 2 from Remark 5·5 we obtain that ϕ1 and ϕ2 also
coincide in some neighbourhood of K 2, see again Figure 4.

Iterating this procedure we obtain diffeomorphisms of R
2, ϕ1, ϕ2, . . . , ϕm satisfying the

following properties:
(a) ϕi |Di = Id;
(b) ϕi is the identity in a neighbourhood of γi ;
(c) d(ϕi )|xvi−1 = Ri−1

m ◦ �i−2(x) ◦ · · · ◦ �1(x) ◦ �0(x) ◦ R−(i−1)
m ;

(d) d(ϕi )|xvi = Ri
m ◦ �i−1(x) ◦ · · · ◦ �1(x) ◦ �0(x) ◦ R−i

m ;
(e) for i = 2 . . . , m we have that ϕi−1 and ϕi coincide in a neighbourhood of K i .
Moreover since �m(x) = Id when lm(x) ∈ K 1 we also obtain that ϕm = Id in a neigh-

bourhood of K 1. Thus ϕm and ϕ1 also coincide in a neighbourhood of K 1.
Now denote by Ei the closure of the connected component of R

2 \ Di contained in Bi and
consider ϕ : R

2 → R
2 defined by

ϕ(x) =
{

ϕi (x), if x ∈ Ei ;
x, otherwise.
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Clearly ϕ is a diffeomorphism and by construction satisfies that it is the identity in a
neighbourhood of the origin and that d(ϕ−1 ◦ F ◦ ϕ)|Am = Rm, as we wanted to prove.

6. Third step and proof of Theorem A

We start proving next two propositions. The first one gives the third step of our approach
in the orientation preserving case. The second one is the equivalent statement for the orient-
ation reversing situation. We remark that the orientation reversing case has not been treated
yet, therefore the proof of Proposition 6.2 deals simultaneously with the three steps of our
approach.

PROPOSITION 6·1. Let F : R
2 → R

2 be a Ck , m-periodic map, C0-conjugated to Rm .

Then F is Ck-conjugated to a m-periodic map G that coincides with Rm in some neighbour-
hood of Am .

PROPOSITION 6·2. Let F : R
2 → R

2 be a planar involution C0-conjugated to S. Then F
is Ck-conjugated to an involution G that coincides with S in some neighbourhood of A2.

Proof of Proposition 6·1. From Proposition 5·1 we can assume that F has Am as invariant
set F |Am = Rm |Am , d(F)(x,y) = Rm if (x, y) ∈ Am and F = Rm in some neighbourhood U
of the origin.

Now consider the Montgomery-Bochner transformation ψ = 1/m
∑m−1

i=0 R−i
m ◦ Fi .

Clearly we have that Rm ◦ ψ = ψ ◦ F. On the other hand since F = Rm on Am we have that
ψ |Am = Id. Moreover since d(F)(x,y) = Rm if (x, y) ∈ Am we also have that d(ψ)(x,y) = Id.

Note also that ψ |U = Id. Therefore from Corollary 3·4 we deduce that there exists V , an
open neighbourhood of Am , such that ψ |V is a diffeomorphism onto its image.

Now set r > 0 such that Br (0) ⊂ U � V . Now we repeat the construction given in the
proof of the Proposition 5·1. That is, we consider Ck-arcs γi contained in Ci � Br/2(0) joining
the points rvi/2 and rvi+1/2 such that the curve Di := K i � γi � K i+1 is of class Ck . By
construction V is still and open neighbourhood of Di , for each i = 1, . . . , m, and hence by
Corollary 5·3 we obtain diffeomorphisms fi : R

2 → R
2 and Vi neighbourhoods of Di such

that fi |Vi = ψ |Vi .

Using the notation introduced in the proof of Proposition 5·1 we define a diffeomorphism
f : R

2 → R
2 by

f (x) =
{

fi(x), if x ∈ Ei ;
x, otherwise.

Since fi |Vi = ψ and fi+1|Vi+1 = ψ it follows that fi and fi+1 coincide in a neighbourhood
of Ki+1 �

(
R

2 \ Br/2(0)
)
. On the other hand since γi ⊂ U�V it follows that fi is the identity

in a suitable neighbourhood of γi . In particular Ei is invariant under f . These facts show
that f is a well defined diffeomorphism. Note also that by construction f |W = ψ |W for a
suitable neighbourhood W of Am .

Lastly set G = f ◦ F ◦ f −1. Since Rm ◦ ψ = ψ ◦ F and ψ is a diffeomorphism in
a neighbourhood of Am it follows that in a suitable neighbourhood of Am the following
equality holds:

Rm = ψ ◦ F ◦ ψ−1.

Since f coincides with ψ in a neighbourhood of Am we obtain that G = Rm in some
neighbourhood of Am, as we wanted to prove.
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Proof of Proposition 6·2. Let g : R
2 → R

2 be the homeomorphism given by Kerékjártó
theorem, such that F ◦ g = g ◦ S. Then, since g is a homeomorphism, we know that
M := g(A2) is a non-compact, closed and connected topological submanifold of R

2 which
is fixed by F. Recall that A2 = R × {0}. We claim that M is a differentiable submanifold of
R

2. To do this we show that M is locally the graph of a Ck-function.
Let (a, b) ∈ M. Then (a, b) is a fixed point of F and d(F)(a,b) is conjugated to S.

Then d(F)(a,b) − Id � 0. If we write F = (F1, F2) this implies that at least one of
the functions F1(x, y) − x and F2(x, y) − y has non-zero gradient at (a, b). Assume for
instance that (∂(F1(x, y) − x)/∂x)(a, b) � 0. By the Implicit Function theorem there
exist neighbourhoods V of (a, b) and W of b and a Ck-map ψ : W → R such that
M � W = {(ψ(t), t) : t ∈ W}. This proves the claim.

From Lemma 3·6 there exists a diffeomorphism φ : R
2 → R

2 such that φ(M) = R×{0}.
Thus the map F̃ := φ ◦ F ◦φ−1 is Ck-conjugated to F and has R×{0} as a manifold of fixed
points. Thus F̃(x, 0) = (x, 0) and

d(F̃)(x,0) =
(

1 B(x)

0 A(x)

)
for some A, B : R → R of class Ck−1. Moreover since d(F̃)(x,0) must be conjugated to S it
follows that A(x) = −1 for all x ∈ R.

From Theorem 5·4 there exists a diffeomorphism ψ : R
2 → R

2 such that ψ(x, 0) =
(x, 0) for all x ∈ R and

d(ψ)(x,0) =
(

1 −B(x)/2
0 1

)
.

If we denote by F = ψ−1 ◦ F̃ ◦ ψ direct computations show that F(x, 0) = (x, 0) and
d(F)(x,0) = S for all x ∈ R.

Lastly let N := (Id + S ◦ F)/2 be the associated Montgomery–Bochner transforma-
tion. Direct computations show that N (x, 0) = (x, 0) and d(N )(x,0) = Id for all x ∈ R.

Therefore from Corollary 3·4 it follows that N is a diffeomorphism in a neighbourhood of
A2. Moreover from Corollary 5·3 there exists a diffeomorphism  : R

2 −→ R
2 that coin-

cides with N in a suitable neighbourhood of A2. Thus we obtain the result by considering
G =  ◦ F ◦ −1.

Proof of Theorem A. We begin with the orientation preserving case. As we said in the
introduction we can reduce to the case that F is C0-conjugated to Rm with m � 2. From
Proposition 6·1 we can assume that F = Rm in some neighbourhood V of Am .

As before, for i = 1, . . . , m we denote by Bi the closure of the connected component of
R

2 \ Am adjacent to Ki and Ki+1. Since F is a homeomorphism mapping Ki � Ki+1 onto
Ki+1 � Ki+2 we deduce that F(Bi) = Bi+1. Consider now the map H : R

2 → R
2 defined

by H = Ri−1
m ◦ F−(i−1) in Bi . Note that the sets Bi are invariant under H and H restricted to

a suitable neighbourhood of Am is the identity. Thus H is a Ck-diffeomorphism. Lastly by
construction we have Rm ◦ H = H ◦ F. This ends the proof of the theorem in this case.

Now we turn to the orientation reversing case. From Proposition 6·2 we can assume that
F |V = S|V in some neighbourhood of A2 = R × {0}. Now define

H(x, y) =
{

(x, y) if y � 0;
F(S(x, y)) if y � 0.
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Since H is the identity in a neighbourhood of A2 it follows that H is diffeomorphism.
Also direct computations show that F ◦ H = H ◦ S. This ends the proof of the theorem.

7. Proof of corollaries

This section is devoted to prove the two corollaries of Theorem A stated in Section 2.

7·1. Proof of Corollary 2·1
Let ϕ(t, x) be the solution of (2·1) passing through x at time t = 0, that is

∂ϕ

∂t
(t, x) = X (t, ϕ(t, x)), ϕ(0, x) = x .

Set F : R
2 → R

2 the Poincaré map, defined by F(x) = ϕ(T, x). By hypothesis for each
x ∈ R

2 there exists mx ∈ N such that Fmx (x) = x . That is F is pointwise periodic. It is
well-known (see [7, 14]) that in this situation there exists m ∈ N such that Fm = Id. That
is all solutions are mT -periodic. From Theorem A there exists a Ck-diffeomorphism � of
R

2 such that F = � ◦ Rn
m ◦ �−1, for some natural number n. For convenience, along this

proof we denote by R[θ] the rotation of angle θ. Note that Rn
m = R[α], where α = 2nπ/m.

Then the change y = �(x) transforms our original system into a new system satisfying that
the corresponding Poincaré map is exactly the rotation R[α]. Thus we can assume that our
system satisfies that F = R[α] and

ϕ(t + T, x) = ϕ(t, R[α]x).

Now, define (t, x) = ϕ(t, R[− αt
T ]x). Notice that

(t + T, x) = ϕ(t + T, R[− α(t+T )
T ]x) = ϕ(t, R[α](R[− α(t+T )

T ]x)) = ϕ(t, R[− αt
T ]x) = (t, x),

so  is T -periodic. Now consider the change of variables x = (t, y). We will have

X (t, x) = ẋ = ∂ϕ

∂t
(t, R[− αt

T ]y) + ∂ϕ

∂x
(t, R[− αt

T ]y)
(
Ṙ[− αt

T ]y + R[− αt
T ] ẏ

)
= X (t, (t, y)) + ∂ϕ

∂x
(t, R[− αt

T ]y)
(
Ṙ[− αt

T ]y + R[− αt
T ] ẏ

)
= X (t, x) + ∂ϕ

∂x
(t, R[− αt

T ]y)
(
Ṙ[− αt

T ]y + R[− αt
T ] ẏ

)
.

Since det(∂ϕ/∂x)�0 we conclude that

Ṙ[− αt
T ]y + R[− αt

T ] ẏ = 0

and obtain

ẏ = −R−1
[− αt

T ] Ṙ[− αt
T ]y = α

T
Ay,

as we wanted to prove.

7·2. Construction of the example in R
7

Following [8] one can find C∞ periodic maps F : R
7 → R

7 without fixed points as soon
as the period is not a power of a prime number. Hence the first possible periods are 6, 15, . . .

We choose the period 15 to guarantee that det F ′ > 0 so that F is an orientation-preserving
diffeomorphism. In that case F is also diffeotopic to the identity (see [9, theorem 8·3·1])
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and so it can be realised as the Poincaré map of some periodic and smooth vector field
X : R × R

7 → R
7, see [13, theorem 8·2·1].

7·3. Proof of Corollary 2·2
First we select a small neighbourhood W ⊂ D of x∗ with the following properties:

(i) W is open and simply connected;
(ii) h(W) = W;

(iii) the restriction of h to W is one-to-one.

This is possible thanks to the inverse function theorem and a well-known result on the exist-
ence of invariant neighbourhoods (see [19] and the references therein). The same argument
of the proof of [19] allow us to find a sequence {xn} of fixed points accumulating at x∗; that
is,

xn −→ x∗, xn�x∗ and h(xn) = xn.

These points are also fixed under h2 = h ◦ h and so x∗ is a non-isolated fixed point of h2.
[18, corollary 1] can be applied (the set U in the statement of this result must be connected)
to the map h2 : W → R

2. It implies that h2 = Id in W .
Next we transport our map via a C∞-diffeomorphism between W and R

2. Note that there
are many diffeomorphisms of this type. A way to construct examples is to use Riemann’s
theorem to map W conformally onto the open unit disk D and then to compose this map
with a radial C∞-diffeomorphism between D and R

2. Define H = ϕ ◦ h ◦ ϕ−1. Then H is
a C∞-map satisfying H 2 = Id. Our main result applies and the conclusion is obtained after
pulling back from R

2 to W . In the case D = R
2 the identity h2 = Id in W leads to h2 = Id

in R
2 by analytic continuation. In this case the change of variables ϕ is not employed.

Appendix A. Proof of Theorem 3·2
The so-called Smoothing Theorem is an useful tool to transform piecewise smooth homeo-

morphisms into diffeomorphisms. It is stated and proved by Hirsch for C∞-manifolds in
[9, p. 182]. The same result is also valid for manifolds of finite class and we will state it
in this more general framework. As in the previous sections, manifolds, maps and diffeo-
morphisms will be understood in the class Ck , where k = 1, 2, . . . is fixed. The case k = ∞
is also included. All manifolds under consideration will be in particular topological spaces
with a countable basis. In this appendix we prove Theorem 3·2. In [4] we stated part (a) of
this result for the case k = 1 and we referred to the book [9] for a proof. As previously
mentioned, Hirsch’s book deals with the case k = ∞, in the paper [4] we left to the reader
the details of the passage from k = ∞ to k = 1. This was probably misleading because the
proof in [9] cannot be easily modified. Indeed there are at least two steps in that proof where
there is a loss of derivatives. This is the case in the construction of isotopies via differential
equations ([9, chapter 8]) and also in the proposed isotopy between a map and its derivative
at a point ([9, p. 112]). The loss of derivatives is irrelevant when working in C∞ but it would
decrease the class of the diffeomorphism when one is working in a finite class. Fortunately
the book by Munkres [17] contains all the tools needed for the proof of Theorem 3·2. The
isotopies in Munkres’ book are constructed carefully in order to preserve the level of differ-
entiability. Next we present a proof based on [17] and [9], hoping that this time our patient
readers will easily follow all the details. The terminology is taken from [9]. We start with
a preliminary observation which will be employed several times and it is somehow linked
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with the definition of clean crossing. In a neighbourhood of V0 the manifolds W0, M0 and
N0 can be viewed as cylinders based on V0. More precisely, it is possible to find an open set
U in W0 with V0 ⊂ U and a diffeomorphism p : U → V0×] − 1, 1[ satisfying

p(x) = (x, 0) if x ∈ V0, p(U � M0) = V0 × [0, 1[, p(U � N0) = V0×] − 1, 0].
This is a direct consequence of the existence of tubular neighbourhoods in the C∞ case (see
[17, page 53]). However in the Ck case with k < ∞ the map p constructed from the tubular
neighbourhood will be of class Ck−1. Thus an alternative procedure has to be employed if we
want to avoid the loss of one derivative. We explain it briefly. Given a Ck-manifold M with
boundary ∂ M , there exists a Ck-diffeomorphism p : U → ∂ M ×[0, 1[, where p(x) = (x, 0)

if x ∈ ∂ M and U is an open subset of M containing ∂ M . This is the conclusion of [17,
theorem 5·9] and it will be convenient to summarise the proof. The local retraction theorem
([17, theorem 5·5]) guarantees the existence of a Ck-retraction r from some neighbourhood
of ∂ M onto ∂ M . On the other hand we can find a Ck function g defined again on some
neighbourhood of ∂ M and such that g = 0 and the differential dg has rank one on the
points of ∂ M . The restriction of p = (r, g) to some appropriate neighbourhood of ∂ M is
the searched map. From our perspective a crucial point in the above proof is the use of the
retraction theorem since this result applies to general submanifolds and does not requires
that the submanifold is a boundary. Hence we can adapt the previous proof to our situation
V0 ⊂ W0 if we select a retraction r from a neighbourhood of V0 onto V0 and a function g
defined on a neighbourhood of V0 and such that g = 0 on V0, g > 0 in M0 \ V0, g < 0 in
N0 \ V0 and the differential dg has rank one everywhere. Since both r and g are of class Ck ,
the same can be said about p.

Before the proof of the Smoothing Theorem we need two lemmas. They will be stated
now but their proof is postponed to the end of the Appendix.

LEMMA A·1. (a) In the conditions of Theorem 3·2 (a), there exist an open set V in W0

containing V0 and a map ϕ : V → W1 which coincides with h on V0 and is a diffeomorphism
from V onto ϕ(V).
(b) Assume now that the conditions of Theorem 3·2 (b) hold and let E be an open subset
of W0 such that cl(E) ⊂ G. Then the map ϕ can be constructed in such a way that it also
coincides with h on E � V .

The next result is a refinement of [17, lemma 6·1]. We have changed the notation slightly
in order to adapt it to our setting.

LEMMA A·2. (a) Let V be a manifold without boundary and let N be an open neigh-
bourhood of V × {0} in V × R+, where R+ = [0, ∞[. Let g be an embedding of N into
V × R+ which equals the identity on V × {0}. Then there exists another embedding g̃ from
N into V × R+ satisfying g̃(N ) = g(N ), g̃ = id in a neighbourhood of V × {0}, g̃ = g in
a neighbourhood of the complement of N .
(b) Assume in addition that G and E are open subsets of V with cl(E) ⊂ G and such that
g = id on (G × R+) � N . Then g̃ can be constructed with the additional property g̃ = id
on (E × R+) � N .

Proof of Theorem 3·2. (a) In view of Lemma A·1 we can consider the map ϕ−1◦h, defined
in a neighbourhood of V0 and such that it equals the identity on V0. This map can be trans-
ported to the cylinder V0 × R via the map p : U → V0×] − 1, 1[ described above. Next
we select the domains of the maps so that this process can be made rigorous. The map ϕ is
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defined on some open set V and coincides with h on V0. Therefore it is possible to find an
open set W∗ in W0 satisfying V0 ⊂ W∗ ⊂ U � V and h(W∗) ⊂ ϕ(U � V). Then the map

g : W −→ V0×] − 1, 1[, g = p ◦ ϕ−1 ◦ h ◦ p−1

with W = p(W∗) is a well defined topological embedding.
Next we are going to apply Lemma A·2 (a) with V = V0 and N = W � (V0 × [0, 1[).

This allows us to construct a diffeomorphism g̃ : N → g(N ) and two sets O and O∗ which
are open in V0 × R+ and satisfy

(V0 × R+) \ N ⊂ O, V0 × {0} ⊂ O∗ ⊂ N , g̃ = g in O � N , g̃ = id in O∗.

Next we define

f+ : M0 −→ M1, f+ =
{

ϕ ◦ p−1 ◦ g̃ ◦ p in p−1(N );
h in M0 \ p−1(N ),

and observe that f+ and h coincide on p−1(O � N ). This shows that f+ is smooth and
we deduce that f+ has an inverse which is also smooth. Finally we observe that f+ and ϕ

coincide on p−1(O∗). In this way we have constructed a diffeomorphism between M0 and
M1 that coincides with ϕ in a neighbourhood of the boundary of M0 and coincides with h
far from this boundary. The same process can be applied to construct f− : N0 → N1 and the
map

f =
{

f+ on M0;
f− on N0,

satisfies all the required conditions. This ends the proof of part (a).
(b) We start the proof of the second part of the theorem with a remark concerning the notion
of clean crossing. The cylinder V0×] − 1, 1[ was employed in the formal definition but it is
clear that the interval ] − 1, 1[ plays no essential role. It can be replaced by any interval of
the type ] − δ, δ[ with δ > 0. Later we will be interested in reducing the size of the domain
of the diffeomorphism p : U → V0×] − 1, 1[. To do this we will consider δ ∈]0, 1[ and
Uδ = p−1(V0×]−δ, δ[). The restricted diffeomorphism p : Uδ → V0×]−δ, δ[ is admissible
for the definition of clean crossing, as it enjoys the properties

p(x) = (x, 0) if x ∈ V0, Uδ � E = p−1(E×] − δ, δ[).
To prove (b) we will introduce some changes in the construction of f so that it coincides with
h on E . The first step is the construction of a subset G of V0 with the following properties: G
is open in the relative topology of V0, the closure of G is compact, cl(E) ⊂ G, p−1(cl(G) ×
[−1/2, 1/2]) ⊂ G. Then we define the set G∗ = p−1(G×] − 1/2, 1/2[) and observe that it
is an open subset of W0 having a clean crossing with V0. Since the closure of G∗ is contained
in G, we can apply Lemma A·1 (b) to find ϕ : V → W1 with ϕ = h on G∗ � V . In principle
this open set V is unrelated to the set U appearing in the condition of clean crossing. After
constructing the set W∗ in the same way as in (a) we find some δ < 1/2 such that the set
Uδ �G∗ is contained in W∗. The existence of δ must be justified. To this end we observe that
the compact set cl(G)×[−δ, δ] converges to cl(G)×{0} as δ goes to zero. This convergence
is understood in the space of compact subsets of V0×] − 1, 1[, endowed with the Hausdorff
topology. Then p−1(cl(G) × [−δ, δ]) converges to p−1(cl(G) × {0}) = cl(G), now in the
space of compact subsets of U . Since cl(G) is contained in the open set W∗, the same will
hold for p−1(cl(G) × [−δ, δ]) when δ is small. In particular Uδ �G∗ = p−1(G×] − δ, δ[) ⊂
W∗.
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We can now define the embedding

g : W −→ V0×] − 1, 1[, g = p ◦ ϕ−1 ◦ h ◦ p−1

with W = p(Uδ�W∗). Note that the set W is smaller than the corresponding set in (a). Since
ϕ = h on G∗ �Uδ �W∗ = G∗ �Uδ = p−1(G×]−δ, δ[), we deduce that g equals the identity
on G×] − δ, δ[. We can now apply Lemma A·2 (b) to modify g and obtain g̃ : W → g(W)

satisfying the additional property g̃ = id on (E × R+) � N where N = W � (V0 × [0, δ[).
The rest of the proof is as in (a)

Proof of Lemma A·1. (a) Following previous remarks we will construct special neigh-
bourhoods of Vi in Wi . Indeed we described the construction for the manifold W0 but the
same applies to W1. For i = 0, 1 we construct diffeomorphisms pi : Ui → Vi×]−1, 1[ with

pi (x) = (x, 0) if x ∈ Vi , pi (Mi � Ui ) = Vi × [0, 1[, pi (Ni � Ui ) = Vi×] − 1, 0].
The domains Ui ⊂ Wi are open neighbourhoods of Vi . The restriction of h as a map from V0

to V1 is a diffeomorphism and the same can be said for

H : V0×] − 1, 1[−→ V1×] − 1, 1[, H(x, t) = (h(x), t).

The searched map is ϕ = p−1
1 ◦ H ◦ p0 defined on V = U0.

(b) Since E has a clean crossing with V0 we can assume that E � U0 = p−1
0 (E×] − 1, 1[)

for some open and relatively compact set E in V0. Then we can select two sets F1 and F2

contained in V0, open in the relative topology and having the following properties: cl(E) ⊂
F2, cl(F2) ⊂ F1, cl(F1) is compact and p−1

0 (cl(F1) × [−1/2, 1/2]) ⊂ G. These sets will be
employed later.

In the notations of (a) let U∗
0 ⊂ W0 be an open set satisfying V0 ⊂ U∗

0 ⊂ U0 and h(U∗
0 ) ⊂

U1. This is possible because h maps V0 onto V1. After restricting the size we can assume that
U∗

0 has the following geometric property, U∗
0 = p−1

0 (U∗) where

U∗ = {(x, t) ∈ V0×] − 1, 1[: |t | < μ(x)}
for some continuous function μ : V0 →]0, 1/2[. Next we define the topological embedding

ĥ : U∗ −→ V1×] − 1, 1[, ĥ = p1 ◦ h ◦ p−1
0 .

This map can be expressed in coordinates

ĥ(x, t) = (X (x, t), T (x, t)), (x, t) ∈ U∗.

In particular, T (x, 0) = 0 and X (x, 0) = h(x). The last ingredient for our construction will
be a Ck function χ : V0×] − 1, 1[→ [0, 1] satisfying χ = 1 in E×] − 1, 1[ and χ = 0
in (V0 \ F2)×] − 1, 1[. This function can be constructed via a Ck partition of unity (see
[17, problem 2·6]). We are ready to define the map H : U∗ → V1×] − 1, 1[ which will be
different from the map defined in (a). Namely,

H(x, t) = (X (x, χ(x, t)t), χ(x, t)T (x, t) + (1 − χ(x, t))t).

The geometric condition on U∗ was imposed to guarantee that H is a well defined map.
Moreover H coincides with ĥ on V0 ×{0} and also on p0(E�U∗

0 ) = (E×]−1/2, 1/2[)�U∗.
We claim that, in contrast to ĥ, the map H is of class Ck in U∗. Actually we will prove that
there exist two open sets O1,O2 ⊂ U∗ with O1 �O2 = U∗ and such that the restriction H|Oi
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is in Ck for i = 1, 2. Define

O1 = (F1×] − 1

2
,

1

2
[) � U∗, O2 = U∗ \ (cl(F2)×] − 1

2
,

1

2
[).

By assumption ĥ is smooth on O1. Moreover O1 has the following geometric property: if
(x, t) lies in O1 then the same holds for (x, s) if |s| � |t |. These two properties together
with the definition of H imply the smoothness of H on O1. The function χ vanishes on
O2, leading to the identity H(x, t) = (h(x), t) if (x, t) ∈ O2. The restriction of h to V0 is
smooth and so the same can be said about the restriction of H to O2.

Once we know that H is Ck , we are going to apply an inversion result stated in Section
3, namely Corollary 3·4. First of all we observe that H|V0 is a homeomorphism between
V0 × {0} and V1 × {0}. Next we must prove that det(d(H)(x, 0))�0 for each x ∈ V0. We
distinguish two cases: (i) Assume x ∈ V0 � O1. We know that ĥ|O1 is an embedding and so
d(ĥ)(x, 0) is a linear isomorphism. From T (x, 0) = 0 we deduce that (∂T /∂x)(x, 0) = 0
and d(ĥ)(x, 0) has a triangular structure. We deduce that

det(d(ĥ)(x, 0)) = det

(
∂ X

∂x
(x, 0)

)
∂T

∂t
(x, 0)�0.

The manifold M0 is mapped by h onto M1 and this implies T (x, t) � 0 whenever t � 0.
The previous observations imply that (∂T /∂t)(x, 0) > 0. After differentiating H some
straightforward computations lead to

det(d(H)(x, 0)) =
[

∂ X
∂x (x, 0) �

0 γ (x)

]
with γ (x) = χ(x, 0)(∂T /∂t)(x, 0) + 1 − χ(x, 0). The quantity γ (x) is positive and so the
above determinant does not vanish. ii) Assume x ∈ V0 � O2. This case is easy because we
know that H(x, t) = (h(x), t) and h defines a diffeomorphism between V0 and V1.

After having checked the assumptions of Corollary 3·4 we can say that there exists an
open set V∗ ⊂ U∗ with V0 × {0} ⊂ V∗ and such that H is a diffeomorphism between V∗ and
H(V∗). The map ϕ = p−1

1 ◦ H ◦ p0 is defined on V = p−1
0 (V∗) and satisfies all the required

properties.

Proof of Lemma A·2. For the proof of (a) we refer to Lemma 6·1 in Munkres’ monograph
[17]. To prove (b) we need to modify some of the arguments in [17]. First of all we observe
that it is not restrictive to assume that N has the special form

Nβ = {(x, t) ∈ V × R+ : 0 � t < β(x)},
where β : V →]0, 1[ is a Ck function. This follows from the condition g = g̃ in the
neighbourhood of the complement of N .

After expressing g in coordinates, g = (X, T ), we notice that T (x, 0) = 0 and, since g
is an embedding, we conclude that (∂T /∂t)(x, t) > 0 for every x ∈ V . We claim that there
exist two Ck functions ε : V →]0, 1] and β1 : V →]0, 1[ such that β1 < β and

ε(x) = 1 if x ∈ E and
∂T

∂t
(x, t) � ε(x) if x ∈ V, t < β1(x).

To construct β1 we recall the positivity of ∂T /∂t on t = 0 and find a neighbourhood of
V × {0} where ∂T /∂t is still positive. Then we can find β1 such that the closure of Nβ1 is
contained in this neighbourhood. That is, ∂T /∂t(x, t) > 0 if x ∈ V , 0 � t � β1(x). The
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construction of ε is more delicate. First we define

ν : V −→]0, 1], ν(x) = min[1, min{∂T

∂t
(x, t) : 0 � t � β1(x)}].

Next we construct a covering of V by open sets U ∗
i having a compact closure and such that

the following property holds: if U ∗
i � E�� then cl(U ∗

i ) ⊂ G. A locally finite covering
{Ui } of open sets with Ui ⊂ U ∗

i can be constructed together with a Ck partition of unity {ϕi }
dominated by {Ui }; that is, 0 � ϕi � 1,

∑
i ϕi = 1 everywhere and supp(ϕi) ⊂ Ui . Define

mi = min{ν(x) : x ∈ cl(Ui)} and ε(x) = ∑
i miϕi (x). Let us check that this function has

the required properties. Given x ∈ E , if i is an index with ϕi (x) > 0 then supp(ϕi) � E is
non-empty. This implies that also U ∗

i � E is non-empty and therefore Ui ⊂ U ∗
i ⊂ G and

mi = 1. This argument works for all points x ∈ E and all indexes with ϕi(x) > 0 so that
ε(x) = ∑

i ϕi (x) = 1. Given any x ∈ V , ν(x) � mi whenever ϕi(x) > 0. This implies
ε(x) � ν(x) and so ε(x) � (∂T /∂t)(x, t) if t � β1(x).

The rest of the proof will consist in a sequence of modifications of the original map g
leading to the searched map g̃. All intermediate maps will be denoted by gi : Nβ → V ×R+,
i = 1, 2, . . . with coordinates gi = (Xi , Ti) and satisfying the properties: gi is an embedding
and gi (Nβ) = g(Nβ), gi = id on V × {0} and also on (E × R+) � Nβ , gi = gi−1 in a
neighbourhood of (V × R+) \ Nβ . We use the convention g0 = g and sum up the above
properties by saying that gi is in the class M. The rest of the proof is organised in three
steps.
Step 1. There exists g1 ∈ M satisfying (∂T1/∂t)(x, t) � 1 in a neighbourhood of V × {0}.
Let α ∈ C∞(R) be a monotone function satisfying α(t) = 0 if t � 1/3 and α(t) = 1 if
t � 2/3. As in [17] we define

(x, t) =
(

1 − α

(
t

β1(x)

))
ε(x)t + α

(
t

β1(x)

)
t

and observe that  is Ck and (x, ·) is an increasing diffeomorphism of the interval
[0, β1(x)]. Indeed, (x, 0) = 0, (x, β1(x)) = β1(x) and ∂/∂t = (1 − α)ε + α +
(α′/β1)(1 − ε)t > 0. The map η1 : cl(Nβ1) → cl(Nβ1), η1(x, t) = (x, (x, t)) is a diffeo-
morphism and we define

g1 : Nβ −→ V × R+, g1 =
{

η−1
1 ◦ g in Nβ1

g otherwise .

Since η1 equals the identity for t � 2β1(x)/3, this map is an embedding with g1(Nβ) =
g(Nβ). Moreover the condition ε = 1 on E implies that η1 also equals the identity on
(E × R+) � Nβ . It is now clear that g1 belongs to the class M. To check the additional
condition imposed on ∂T1/∂t we observe that η−1

1 (x, t) = (x, t/ε(x)) if t � ε(x)β1(x)/3.
Let β2 : V →]0, 1[ be a Ck function such that T (x, t) � ε(x)β1(x)/3 if 0 � t � β2(x).
Then if (x, t) lies in Nβ2 , (∂T1/∂t)(x, t) = (1/ε(x))(∂T /∂t)(x, t) � 1.
Step 2. There exists g2 ∈ M satisfying T2(x, t) = t in a neighbourhood of V × {0}.
Given (x, t) ∈ Nβ2 , consider the equation with unknown τ ,

F(x, t; τ) :=
(

1 − α

(
t

β2(x)

))
T1(x, τ ) + α

(
t

β2(x)

)
τ − t = 0.

Since (∂T1/∂t)(x, t) � 1 if 0 � t � β2(x) we deduce that T1(x, t) � t . This inequality
implies that F(x, t; ·) has a change of sign, F(x, t; 0) � 0 � F(t, x; β2(x)), and so F = 0
has at least one solution τ in [0, β2(x)]. This solution is unique because F(t, x; ·) is strictly
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Fig. 5. (Colour online) Construction of gi and overlapping of the succesive modifications.

increasing. Actually, ∂ F/∂τ = (1 − α)(∂T1/∂t) + α � 1. The positivity of this derivative
also implies that τ = τ(x, t) is of class Ck on x ∈ V , 0 � t � β2(x). For future use we note
that T1(x, τ (x, t)) = t if 0 � t � β2(x)/3 and τ(x, t) = t if t � 2β2(x)/3. In particular,
τ(x, 0) = 0 and τ(x, β2(x)) = β2(x). By implicit differentiation,[

(1 − α)
∂T1

∂t
+ α

]
∂τ

∂t
= 1 + α′

β2
(T1 − τ) � 1,

implying that (∂τ/∂t)(x, t) > 0. The map η2(x, t) = (x, τ (x, t)) is a diffeomorphism of the
closure of Nβ2 . It equals the identity on t � 2β2(x)/3 and also on t = 0. Since T1(x, t) = t
if x ∈ E , 0 � t � β2(x), we deduce that τ(x, t) = t if x ∈ E and so η2 is also the identity
on (E × R+) � Nβ2 . The map

g2 : Nβ −→ V × R+, g2 =
{

g1 ◦ η2 in Nβ2

g otherwise,

is in M and satisfies T2(x, t) = T1(x, τ (x, t)) = t if 0 � t � β2(x)/3.
Step 3. In this step we proceed exactly as in [17]. We sketch the main ideas of the con-
struction and refer to [17] for more details. As in [17] we employ the notation Y = Nβ2 .
The manifold V can be covered by a locally finite collection {Ui }i∈I of open subsets of V
such that the closure of each Ui is diffeomorphic to a closed ball in R

n−1. The set of in-
dexes can be chosen at most countable and we will assume that it is either a finite set of
the type I = {i ∈ N : 3 � i � N } or the infinite set I = {3, 4, 5, . . . }. We select a
second covering of V , now by compact sets Ci ⊂ Ui . Finally Vi will be open sets (in V )
sastisfying Ci ⊂ Vi and cl(Vi) ⊂ Ui . Let c3 > 0 be such that U3 × [0, c3] is contained in Y
and consider the restriction of g2 to this set. We apply [17, lemma 6·2] to find an embedding
g3 : U3 × [0, c3] → V × R+ satisfying g3(U3 × [0, c3]) = g2(U3 × [0, c3]), T3 = t and the
properties below:

(1) g3 = id on U3 × {0} and on C3 × [0, δ3] for some δ3 > 0;
(2) X3 = X2 outside V3 × [0, c3/2];
(3) if g2 is the identity on {x} × [0, b] for some x ∈ U3 and b < β2(x), then g3 is also the

identity on this set.
This last property is important because it guarantees that g3 = id on (E × R+) � Y . The
map g3 can be extended to Y via the formula g3 = g2 on Y \ (U3 × [0, c3]). The embedding
g3 : Y → g2(Y ) satisfies T3 = t everywhere and g3 = id on C3 × [0, δ3] for some δ3 <

β2(x)/2. The process can be repeated inductively on the set I and the figures below illustrate
the passage from gi−1 to gi . The horizontal axis is the manifold V and the regions in blue
are Ci × [0, δi ]. The map is not modified in the white region.
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The succesive modifications preserve the previous conditions gi−1 = id on C j × [0, δ j ],
j < i , thanks to property (3). The same can be said about the condition gi−1 = id on
(E × R+) � Y . If the set I is finite we find, after a finite number of modifications, the map

g̃ : Nβ −→ V × R+, g̃ =
{

gN in Y

g2 otherwise.

If I is infinite then g̃ is defined by

g̃(x, t) = lim
i→∞

gi (x, t) if (x, t) ∈ Y.

Then g̃ is extended to Nβ by letting g̃ = g2 on Nβ \ Y .
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