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08193 Bellaterra, Barcelona, Catalonia, Spain

Weinian Zhang∗

Department of Mathematics, Sichuan University

Chengdu, Sichuan 610064, China

(Communicated by Yuan Lou)

Abstract. Hilbert’s 16th Problem suggests a concern to the cyclicity of planar

polynomial differential systems, but it is known that a key step to the answer is
finding the cyclicity of center-focus equilibria of polynomial differential systems

(even of order 2 or 3). Correspondingly, the same question for polynomial

discontinuous differential systems is also interesting. Recently, it was proved
that the cyclicity of (1, 2)-switching FF type equilibria is at least 5. In this

paper we prove that the cyclicity of (1, 3)-switching FF type equilibria with

homogeneous cubic nonlinearities is at least 3.

1. Introduction and the main result. A differential system of the form

ẋ = P (x, y), ẏ = Q(x, y), (1)

where the dot denotes derivative with respect to an independent variable t, and P
and Q are both polynomials in the real variables x and y, is called a polynomial
differential system on the plane R2. The maximum of the degrees of P and Q is
referred to the degree of system (1). Thus, a planar polynomial differential system
of degree one is a linear differential system, and a planar polynomial differential
system of degree two (or three) is called a quadratic (or cubic) differential system.

A periodic orbit of a differential system which is isolated in the set of all periodic
orbits of the system is called a limit cycle, which is one of main topics in the
qualitative theory of differential equations in the plane (see [5, 10, 17, 19]). The
rise of limit cycles near an equilibrium caused by the changes of its stability is
called Hopf bifurcation (see [15]). The cyclicity of that equilibrium is the maximum
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