pp. 6541-6552

CYCLICITY OF (1,3)-SWITCHING FF TYPE EQUILIBRIA

XINGWU CHEN

Department of Mathematics, Sichuan University Chengdu, Sichuan 610064, China

JAUME LLIBRE

Department de Matemàtiques, Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain

WEINIAN ZHANG*

Department of Mathematics, Sichuan University Chengdu, Sichuan 610064, China

(Communicated by Yuan Lou)

ABSTRACT. Hilbert's 16th Problem suggests a concern to the cyclicity of planar polynomial differential systems, but it is known that a key step to the answer is finding the cyclicity of center-focus equilibria of polynomial differential systems (even of order 2 or 3). Correspondingly, the same question for polynomial discontinuous differential systems is also interesting. Recently, it was proved that the cyclicity of (1, 2)-switching FF type equilibria is at least 5. In this paper we prove that the cyclicity of (1, 3)-switching FF type equilibria with homogeneous cubic nonlinearities is at least 3.

1. Introduction and the main result. A differential system of the form

$$\dot{x} = P(x, y), \qquad \dot{y} = Q(x, y), \tag{1}$$

where the dot denotes derivative with respect to an independent variable t, and Pand Q are both polynomials in the real variables x and y, is called a *polynomial* differential system on the plane \mathbb{R}^2 . The maximum of the degrees of P and Q is referred to the degree of system (1). Thus, a planar polynomial differential system of degree one is a *linear differential system*, and a planar polynomial differential system of degree two (or three) is called a quadratic (or cubic) differential system.

A periodic orbit of a differential system which is isolated in the set of all periodic orbits of the system is called a *limit cycle*, which is one of main topics in the qualitative theory of differential equations in the plane (see [5, 10, 17, 19]). The rise of limit cycles near an equilibrium caused by the changes of its stability is called *Hopf bifurcation* (see [15]). The *cyclicity* of that equilibrium is the maximum

²⁰¹⁰ Mathematics Subject Classification. Primary: 34C07, 34C23, 34C37, 34K18.

 $Key\ words\ and\ phrases.$ Hopf bifurcation, cyclicity, discontinuous differential system, limit cycle.

The first author is supported by NSFC #11871355. The second author has been partially supported by the Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER) and MDM-2014-0445, the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911. The third author is supported by NSFC #11726623 and #11771307.

^{*} Corresponding author: Weinian Zhang.