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Abstract. In this paper we investigate the center problem for the discon-

tinuous piecewise smooth quasi–homogeneous but non–homogeneous polyno-
mial differential systems. First, we provide sufficient and necessary conditions

for the existence of a center in the discontinuous piecewise smooth quasi–

homogeneous polynomial differential systems. Moreover, these centers are
global, and the period function of their periodic orbits is monotonic. Sec-

ond, we characterize the centers of the discontinuous piecewise smooth quasi–
homogeneous cubic and quartic polynomial differential systems.

1. Introduction. When all the orbits of a differential system in R2 in a punctured
neighborhood of an equilibrium p of the system are periodic, we say that the p is a
center of the differential system. A center p of a differential system is global when
all the orbits of the system in R2 \ {p} are periodic.

In the qualitative theory of planar smooth differential systems, the center problem
is a classical problem, which consists in determining the existence of a center, i.e.
give necessary and sufficient conditions in order that an equilibrium of a differential
system in the plane R2 could be a center. The study of the centers goes back to
Poincaré [28] and Dulac [8], and in the present days many questions about them
remain open.

It is known that there are three kind of centers for the analytic differential systems
in R2. The linear type centers or simply linear centers are the centers whose linear
part has purely imaginary eigenvalues. The nilpotent centers are the centers such
that the eigenvalues of their linear part are both zeros, but the linear part is not
identically zero. Finally, the degenerate centers are the centers whose linear part is
identically zero. For more details on these three kinds of centers see for instance
[21] and the references quoted there.
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