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Abstract. In this paper we investigate the center problem for the discontinuous
piecewise smooth quasi–homogeneous but non–homogeneous polynomial differen-
tial systems.

First, we provide sufficient and necessary conditions for the existence of a center
in the discontinuous piecewise smooth quasi–homogeneous polynomial differential
systems. Moreover, these centers are global, and the period function of their
periodic orbits is monotonic.

Second, we characterize the centers of the discontinuous piecewise smooth
quasi–homogeneous cubic and quartic polynomial differential systems.

1. Introduction

When all the orbits of a differential system in R
2 in a punctured neighborhood

of an equilibrium point p of the system are periodic, we say that the p is a center
of the differential system. A center p of a differential system is global when all the
orbits of the system in R

2 \ {p} are periodic.

In the qualitative theory of planar smooth differential systems, the center problem
is a classical problem, which consist in determining the existence of a center, i.e. give
necessary and sufficient conditions in order that an equilibrium point of a differential
system in the plane R

2 be a center. The study of the centers goes back to Poincaré
[29] and Dulac [9], and in the present days many questions about them remain open.

It is known that there are three kind of centers for the analytic differential systems
in R

2. The linear type centers or simply linear centers are the centers whose linear
part have purely imaginary eigenvalues. The nilpotent centers are the centers such
that the eigenvalues of their linear part are both zero, but the linear part is not
identically zero. Finally, the degenerate centers are the centers whose linear part is
identically zero. For more details on these three kind of centers see for instance [24]
and the references quoted there.

The linear centers can be studied computing their Lyapunov constants, and the
study of these centers has been stimulated considerably by the use of computer
algebra systems [10], but in any case these computations are in general huge and
sometimes non-realistic because they need too much time of computation and too
much memory of the computer. Moreover, in a neighborhood of a linear center of
an analytic system always exist a local analytic first integral, as it was proved by
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Poincaré [30] and Lyapunov [21]. In general do not exist local analytic first integrals
in the neighborhoods of the nilpotent or degenerate centers, see for instance [24].
But any center always has a local C∞ first integral, see [26].

For analytic and in particular for polynomial differential systems, there are some
methods for studying the nilpotent centers, see [13, 17, 24, 18, 28]. But the de-
termination of the degenerate centers of the analytical differential systems is more
difficult and only very partial results have been obtained.

The centers of the quasi–homogeneous polynomial differential systems have been
classified, and all are global centers see [19] and [16]. The normal forms of the
quasi-homogeneous polynomial differential systems of degree n having a center at
the origin were obtained in [35].

In these last decades discontinuous piecewise smooth differential systems have
been widely used in a natural way for modeling real processes and different phenom-
ena, see for instance [4, 5, 25]. The study of the discontinuous piecewise differential
systems started with Andronov et al in [2], they mainly analyzed the discontinu-
ous piecewise linear differential systems. Recently many works paid attention to
different aspects (as their limit cycles, bifurcations, integrability, ...) of the linear
or nonlinear discontinuous piecewise smooth differential systems, see for instance
[1, 6, 7, 8, 12, 34].

In this paper we are interested in the centers of the discontinuous piecewise smooth
quasi–homogeneous polynomial differential systems. It is known that the quasi–
homogeneous polynomial differential systems of even degree has no centers, see
[3, 19, 32, 35]. However, as we shall see the discontinuous piecewise smooth quasi–
homogeneous polynomial differential systems of even degree can have centers.

A polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y),(1)

in R
2 is a quasi–homogeneous polynomial differential system if there exist constants

s1, s2, m ∈ Z+ such that

P (αs1x, αs2y) = αs1+m−1P (x, y) and Q(αs1x, αs2y) = αs2+m−1Q(x, y),

for all α ∈ R
+, with P (x, y), Q(x, y) ∈ R[x, y] \ {0}. We say that the quasi–

homogeneous polynomial differential system (1) or its associated vector field has
weight vector w = (s1, s2, m), and degree n if n is the maximum of the degrees of P
and Q. When s1 = s2 = 1, system (1) is a homogeneous system of degree m.

Clearly a quasi–homogeneous polynomial differential system (1) has a unique
minimal weight vector (MWV for short) w̃ = (s̃1, s̃2, m̃) satisfying that s̃1 ≤ s1, s̃2 ≤
s2 and m̃ ≤ m for any other weight vector (s1, s2, m) of system (1). In what follows
we assume without loss of generality that P and Q in system (1) have not a non–
constant common factor.

Here we shall work with discontinuous piecewise smooth polynomial differential
system in R

2 formed by two quasi–homogeneous polynomial differential systems
separated by the straight line y = 0. More precisely, we deal with the discontinuous
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piecewise smooth quasi–homogeneous polynomial differential system of degree n

ẋ = P+(x, y) =
∑

0≤i+j≤n

a+i,jx
iyj, ẏ = Q+(x, y) =

∑

0≤i+j≤n

b+i,jx
iyj, in y ≥ 0

ẋ = P−(x, y) =
∑

0≤i+j≤n

a−i,jx
iyj, ẏ = Q−(x, y) =

∑

0≤i+j≤n

b−i,jx
iyj, in y ≤ 0.

(2)

We assume that (P+, Q+) and (P−, Q−) are quasi–homogeneous polynomial vector
fields with the same MWV.

In this paper first we characterize the centers of the discontinuous piecewise
smooth quasi–homogeneous but non–homogeneous polynomial differential systems,
see Theorems 1 and 2. And after we characterize the global centers of discontinu-
ous piecewise smooth quasi–homogeneous but non–homogeneous cubic and quartic
polynomial vector fields.

This article is organized as follows. In section 2 we present sufficient and nec-
essary conditions for the existence of a center in a discontinuous piecewise smooth
quasi–homogeneous polynomial differential system. These centers will be global
and the period function of their periodic orbits will be monotonic. Sections 3-
4 are dedicated to analyze the center problem for discontinuous piecewise smooth
quasi–homogeneous but non–homogeneous cubic and quartic polynomial differential
systems, respectively.

2. Centers of piecewise smooth quasi–homogeneous polynomial

differntial systems

According to [14, Proposition 10], if a smooth quasi–homogeneous but non–
homogeneous polynomial differential system is of degree n with the weight vector
(s1, s2, m) and m > 1, then the system has the MWV

w̃ =

(
ς + κ

s
,

κ

s
, 1 +

(p− 1)ς + (n− 1)κ

s

)
,(3)

with p ∈ {0, 1, ..., n−1}, ς ∈ {1, 2, ..., n−p} and κ ∈ {1, . . . , n−p− ς+1} satisfying

s1 =
(ς + κ)(m− 1)

D
, s2 =

κ(m− 1)

D
,

where D = (p−1)ς+(n−1)κ and s = gcd(ς, κ). Furthermore, the integers (ς+κ)/s
and κ/s are coprime and at least one of them is odd, see [33, 35]. From the algorithm
described in subsection 3.1 of [14] the quasi–homogeneous but non–homogeneous
polynomial differential system (1) of degree n with weight vector (s1, s2, m) can be
written as

Xpςκ = Xp
n +Xpςκ

n−ς + Vpςκ,(4)

where

Xp
n = (ap,n−px

pyn−p, bp−1,n−p+1x
p−1yn−p+1)T
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is the homogeneous part of degree n with coefficients not all zero,

Vpςκ =
∑

ς1 ∈ {1, . . . , n− p} \ {ς}
κς1 ς = κς1 and

κς1 ∈ {1, . . . , n− ς1 − p+ 1}

X
pς1κς1
n−ς1 ,

Xpςκ
n−ς = (ap+κ,n−ς−p−κx

p+κyn−ς−p−κ, bp+κ−1,n−ς−p−κ+1x
p+κ−1yn−ς−p−κ+1)T ,

and X
pς1κς1
n−ς1 ’s having the same expressions as that of Xpςκ

n−ς . In order that Xpςκ to be
of degree n we must have Xp

n 6≡ 0, and in order that it does not be an homogeneous
system at least one of the monomials which are not in Xp

n must be different from
zero.

We shall study the dynamics of the generic discontinuous piecewise smooth quasi–
homogeneous polynomial differential systems (2) close to the discontinuous line,
i.e., the x-axis, by using the Filippov convection method, see [4, 11, 22, 23]. The
discontinuous line

L := {(x, y) ∈ R
2| F (x, y) = y = 0}

separates the plane into two open non–overlapping regions

Y + = {(x, y) ∈ R
2| y > 0} and Y − = {(x, y) ∈ R

2| y < 0}.

Suppose that

σ(x, y) =
〈
(Fx, Fy), (P

+, Q+)
〉
·
〈
(Fx, Fy), (P

−, Q−)
〉
,

where < ·, · > denotes the standard inner product. From (2) and (4), the crossing
set of system (2) is

Lc = {(x, y) ∈ L| σ(x, y) > 0}(5)

= {(x, y) ∈ L| b+p+κ−1,0b
−
p+κ−1,0 x2(p+κ−1) > 0}

=
{ {(x, y) ∈ L| x 6= 0} if b+p+κ−1,0b

−
p+κ−1,0 > 0,

∅ if b+p+κ−1,0b
−
p+κ−1,0 ≤ 0.

The orbits of the (2) which reach any point (x, y) ∈ Lc crosses the line of disconti-
nuity L, i.e. the vectors (P+(x, y), Q+(x, y)) and (P−(x, y), Q−(x, y)) point to the
“same” direction and are transverse to Lc.

The sliding set Ls is the complement of Lc in L, which is given by

Ls = {(x, y) ∈ L| σ(x, y) ≤ 0}(6)

= {(x, y) ∈ L| b+p+κ−1,0b
−
p+κ−1,0 x2(p+κ−1) ≤ 0}

=
{ L if b+p+κ−1,0b

−
p+κ−1,0 ≤ 0,

{(x, y) ∈ L| x = 0} if b+p+κ−1,0b
−
p+κ−1,0 > 0.

Moreover, in Ls the points satisfying the equation
〈
(Fx, Fy), (P

− − P+, Q− −Q+)
〉
= 0(7)

are the sliding equilibrium points.

The equilibrium points of a discontinuous piecewise smooth quasi–homogeneous
polynomial differential system are the equilibria contained in the open half-planes
{y > 0} and {y < 0}, together with the sliding equilibrium points.
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If all periodic orbits inside the period annulus of a center have the same period,
the center is isochronous.

Making a quasi–homogeneous blow-up x = rs1 cos θ, y = rs2 sin θ, which was also
used in [16], we transform system (2) into the system

dr

dθ
=





=
rdH+(θ)/(s1 cos

2 θ + s2 sin
2 θ)

rd−1G+(θ)/(s1 cos2 θ + s2 sin
2 θ)

=
rH+(θ)

G+(θ)
if y ≥ 0,

=
rdH−(θ)/(s1 cos

2 θ + s2 sin
2 θ)

rd−1G−(θ)/(s1 cos2 θ + s2 sin
2 θ)

=
rH−(θ)

G−(θ)
if y < 0,

(8)

where

H±(θ) = P±(cos θ, sin θ) cos θ +Q±(cos θ, sin θ) sin θ,

G±(θ) = s1Q
±(cos θ, sin θ) cos θ − s2P

±(cos θ, sin θ) sin θ.

According to [31, Chapter 2], a necessary condition for θ = θ0 to be an exceptional
direction is G+(θ) = 0 (resp. G−(θ) = 0) on the half plane y ≥ 0 (resp. y < 0), and
no orbits connect with the origin O along other directions.

Theorem 1. A discontinuous piecewise smooth quasi–homogeneous polynomial dif-
ferential system (2) with a MWV (s1, s2, m) has a center at the origin O(0, 0) if and
only if Lc = {(x, y) ∈ L| x 6= 0} and

∫ π

0

H+(θ)

G+(θ)
dθ +

∫ 0

−π

H−(θ)

G−(θ)
= 0,(9)

where G+(θ) 6= 0 if θ ∈ [0, π] and G−(θ) 6= 0 if θ ∈ [−π, 0]. The center is global and
the period function of periodic orbits is monotonic.

Proof. Notice that no equilibria of piecewise smooth systems exist in the regions Y ±.
From the aforementioned analysis of sliding sets and crossing sets in the discontin-
uous line L, the crossing set Lc of system (2) is either ∅ or the x-axis except the
origin. Thus, system (2) has a center at the origin only if Lc = {(x, y) ∈ L| x 6= 0}.

When the crossing set Lc is the x-axis except the origin, let p
+(r, θ) (resp. p−(r, θ))

be the solution of piecewise smooth system (2) in polar coordinates (x, y) = (ρ cos θ,
ρ sin θ) for 0 ≤ θ < π (resp. −π ≤ θ < 0), satisfying that the initial condition
p+(r, 0) = r (resp. p−(r,−π) = r) holds, which is well defined in the region R

2 \ Ls.
We define the positive Poincaré half-return map as

P+(r) := lim
θ→π

p+(r, θ) = r e
∫ π
0

H+(θ)

G+(θ)
dθ

and the negative Poincaré half-return map as

P−(r) := lim
θ→0

p−(r, θ) = r e
∫ 0
−π

H−(θ)

G−(θ)
dθ

according to system (8), as shown in Figure 1. Here, without loss of generality, we
suppose that the orbits surrounding the origin rotate anti-clockwise. If the direction
is clockwise, we can make a time rescaling. In the next step of this proof, we
will show that the orbits around the origin are spirals with a period 2π under the
conditions of this theorem.
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O

r

Figure 1. Existence of closed orbits.

The Poincaré return map associated to piecewise smooth system (2) is given by
the composition of these two maps

P(r) := P−(P+(r)) = r e
∫ π
0

H+(θ)

G+(θ)
dθ

e
∫ 0
−π

H−(θ)

G−(θ)
dθ
.(10)

In order to obtain the existence of a center and further a global center at the origin,
we need to present P(r)− r ≡ 0 for r > 0, which is equivalent to (9).

Note that the conditions G+(θ) 6= 0 if θ ∈ [0, π] and G−(θ) 6= 0 if θ ∈ [−π, 0] can
not only guarantee the integrability in (9), but also the non-existence of invariant
curves passing through the origin. Otherwise, if G+(θ0) = 0 for θ0 ∈ [0, π] or
G−(θ0) = 0 for θ0 ∈ [−π, 0], we obtain the invariant

C1 := coss2(θ0) y
s1 − sins1(θ0) x

s2 = 0(11)

when θ0 6= ±π/2. If θ0 = ±π/2, the half y-axis is invariant according to the
expression of G±(θ) in (8) and the origin cannot be a center. Because at least one of
s1 and s2 is odd, we can always solve a real branch connecting with the origin from
the above equation (11), which is just an invariant curve of system (2). Actually, if
p is odd and π/2 6= θ0 ∈ [0, π], from (11) we have the invariant curve

y =
sin(θ0)

coss2/s1(θ0)
xs2/s1

on the half plane y ≥ 0. If p is even and π/2 6= θ0 ∈ [0, π], again from (11) we have
the invariant curve

x =
cos(θ0)

sins1/s2(θ0)
ys1/s2

on the half plane y ≥ 0, because s2 must be odd. On the half plane y < 0, we can
discuss in a similar way and can always find an real invariant curve if G−(θ) = 0
for θ ∈ [−π, 0]. Remark that the factor y divides Q+(x, y) or Q−(x, y) if G±(0) = 0
or G±(π) = 0, respectively. Thus, σ(x, y) = 0 for (x, y) ∈ L according to (6) and
Ls = L, yielding that the origin cannot be a center in this case. Thus, the conditions
G+(θ) 6= 0 if θ ∈ [0, π] and G−(θ) 6= 0 if θ ∈ [−π, 0] are necessary in order that the
origin be a center.

Moreover, we actually get P(r) = r for all r > 0, implying that the solution curve
of system (8) through (r, 0) is a closed orbit and the origin O is a global center.
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Finally, we shall prove that the period annulus of the center O is monotonic with
respect to the initial value and then it cannot be isochronous. Assuming that Γr0

is the closed trajectory through (r0, 0) inside the periodic annulus of the center
O, we can define the positive half-period function as T+(r0) :=

∫
Γ+
r0

dt and the

negative half-period function as T−(r0) :=
∫
Γ−

r0
dt, where r0 > 0, Γ+

r0 = {(ρ, θ) ∈
R

2 | ρ = p+(r0, θ)} and Γ−
r0

= {(ρ, θ) ∈ R
2 | ρ = p−(r0, θ)}. Thus, the complete

period function associated to system (8) is given by the sum of these two functions

(12)

T (r0) =

∮

Γr0

dt = T+(r0) + T−(r0)

=

∫

Γ+
r0

s1 cos
2 θ + s2 sin

2 θ

rm−1G+(θ)
dθ +

∫

Γ−

r0

s1 cos
2 θ + s2 sin

2 θ

rm−1G−(θ)
dθ

=

∫ π

0

s1 cos
2 θ + s2 sin

2 θ

(p+(r0, θ))m−1G+(θ)
dθ +

∫ 0

−π

s1 cos
2 θ + s2 sin

2 θ

(p−(r0, θ))m−1G−(θ)
dθ.

Notice that the functions p±(r0, θ) and G±(θ) are bounded and nonzero with respect
to θ for arbitrary fixed r0 > 0, because the origin is a center and p−(p+(r0, θ), θ) has
period 2π in θ. Therefore, the two integrand functions in (12) are integrable. By
(8),

p+(r0, θ) = r0 e
∫ θ
0

H+(θ)

G+(θ)
dθ

and p−(r0, θ) = r0 e
∫ θ
−π

H−(θ)

G−(θ)
dθ
,

it follows that
dT (r0)

dr0
=

(1−m)

r0
T (r0) < 0,

which implies that the period T (r0) of the periodic orbits inside the period annulus
of the center O is monotonic in r0. Clearly, the center cannot be isochronous. This
completes the proof of the theorem. �

Remark that we can also obtain the results of Theorem 1 using the properties of
quasi-homogeneous functions

η±(x, y) = s1xQ
±(x, y)− s2yP

±(x, y).

According to [27, Proposition 4], if η+(0, 1) = 0 (or η−(0, 1) = 0), then the half
y-axis is invariant for the flow of the vector (P+, Q+) (or (P−, Q−)). Moreover,
if there are real values λ± such that η±(1, λ±) = 0 respectively, then there is an
invariant curve from the real branch of the curve ys1 − λs1

±xs2 = 0 for system (2),
where λ+ ≥ 0 and λ− ≤ 0 if s2 is even. Thus, the origin cannot be a center.

Notice that the smooth quasi-homogeneous polynomial differential system (1)
with a MWV (s1, s2, d) is Liouvillian integrable. Moreover, we can find its inverse

integrating factors s1xQ(x, y)− s2yP (x, y) or (s1xQ(x, y)− s2yP (x, y))/H̃(x, y) ac-
cording to [19], where

H̃(x, y) = (s1x
2s2 + s2y

2s1)
1

2s1s2 e−
∫ arcTn(ys1/xs2)
0

F (θ)
G(θ)

dθ

is a first integral of system (1),

F (θ) = Cs2s2−1θ P (Csθ, Snθ) + Sn2s1−1θ Q(Csθ, Snθ),

G(θ) = s1Csθ Q(Csθ, Snθ)− s2Snθ P (Csθ, Snθ),
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Tn(θ) =
Sns1θ

Css2θ

and Csθ and Snθ are the (s1, s2)-trigonometric functions. Thus, we can always
suppose that system (2) has a first integral H+(x, y) for y ≥ 0 and a first integral
H−(x, y) for y < 0. With the analysis of Poincaré return map, we can present
another sufficient and necessary conditions for the existence of center as follows,
which is equivalent to the conditions in Theorem 1.

Theorem 2. Piecewise smooth quasi–homogeneous polynomial differential system
(2) with a MWV (s1, s2, m) has a center at the origin O(0, 0) if and only if Lc =
{(x, y) ∈ L| x 6= 0}, η±(0, 1) 6= 0, η±(1, λ) have not real zeros for odd s2 and η+(1, λ)
(resp. η−(1, λ)) has not non-negative (resp. non-positive) zeros for even s2, and
there exists r1 < 0 such that H+(r0, 0) = H+(r1, 0) and H−(r0, 0) = H−(r1, 0) for
arbitrary r0 > 0. The center is global and the period function of periodic orbits is
monotonic.

3. Global center of piecewise smooth cubic quasi–homogeneous

systems

Due to Proposition 19 of Garćıa, Llibre and Pérez del Rı́o [14], a smooth quasi-
homogeneous but non-homogeneous cubic polynomial differential system without
common factors has one of the following seven forms:

(i) : ẋ = y(a11x+ a12y
2), ẏ = b11x+ b12y

2

with MWV (2, 1, 2) and a12b11 6= 0, a11b12 − a12b11 6= 0;

(ii) : ẋ = a21x
2 + a22y

3, ẏ = b2xy with MWV (3, 2, 4) and a21a22b2 6= 0;

(iii) : ẋ = a3y
3, ẏ = b3x

2 with MWV (4, 3, 6) and a3b3 6= 0;

(iv) : ẋ = x(a41x+ a42y
2), ẏ = y(b41x+ b42y

2)

with MWV (2, 1, 3) and a41b42 6= 0, a41b42 − a42b41 6= 0;

(v) : ẋ = a5xy
2, ẏ = b51x

2 + b52y
3 with MWV (3, 2, 5) and a5b51b52 6= 0;

(vi) : ẋ = a6xy
2, ẏ = b61x+ b62y

3 with MWV (3, 1, 3) and a6b61b62 6= 0;

(vii) : ẋ = a71x+ a72y
3, ẏ = b7y with MWV (3, 1, 1) and a71a72b7 6= 0.

We have the following piecewise smooth quasi-homogeneous but non-homogeneous
cubic polynomial differential systems directly from the smooth systems (i)-(vii).
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Lemma 3. Every planar piecewise smooth quasi-homogeneous but non-homogeneous
cubic polynomial differential system is one of the following seven systems:

(I) : ẋ = y(a11x+ a12y
2), ẏ = b11x+ b12y

2 if y ≥ 0,

ẋ = y(ã11x+ ã12y
2), ẏ = b̃11x+ b̃12y

2 if y < 0;
(II) : ẋ = a21x

2 + a22y
3, ẏ = b2xy if y ≥ 0,

ẋ = ã21x
2 + ã22y

3, ẏ = b̃2xy if y < 0;
(III) : ẋ = a3y

3, ẏ = b3x
2 if y ≥ 0,

ẋ = ã3y
3, ẏ = b̃3x

2 if y < 0;
(IV ) : ẋ = x(a41x+ a42y

2), ẏ = y(b41x+ b42y
2) if y ≥ 0,

ẋ = x(ã41x+ ã42y
2), ẏ = y(b̃41x+ b̃42y

2) if y < 0;
(V ) : ẋ = a5xy

2, ẏ = b51x
2 + b52y

3 if y ≥ 0,

ẋ = ã5xy
2, ẏ = b̃51x

2 + b̃52y
3 if y < 0;

(V I) : ẋ = a6xy
2, ẏ = b61x+ b62y

3 if y ≥ 0,

ẋ = ã6xy
2, ẏ = b̃61x+ b̃62y

3 if y < 0;
(V II) : ẋ = a71x+ a72y

3, ẏ = b7y if y ≥ 0,

ẋ = ã71x+ ã72y
3, ẏ = b̃7y if y < 0;

where all parameters satisfy the same inequality conditions as in the smooth systems
(i)-(vii).

The piecewise smooth systems (II), (IV ) and (V II) have the same sliding set L,
yielding that their origins cannot be a center. Moreover, both systems (V ) and (V I)
have the invariant straight line x = 0, so their origins cannot be a center. Thus,
only the piecewise smooth systems (I) and (III) may have a center at the origin.

After taking linear changes together with scalings (x, y, dt) → (b11x/a11, y, a11dt)
if y ≥ 0, and (x, y, dt) → (a11x/ã12, y, a11dt) if y < 0, system (I) becomes

(13)
ẋ = y(x+ a12y

2), ẏ = x+ b12y
2 if y ≥ 0,

ẋ = y(ã11x+ y2), ẏ = b̃11x+ b̃12y
2 if y < 0.

Moreover, with the scaling (x, y, dt) → ((b3/a3)
1
3x, y, a

2
3
3 b

1
3
3 dt), system (III) becomes

(14)
ẋ = y3, ẏ = x2 if y ≥ 0,

ẋ = ã3y
3, ẏ = b̃3x

2 if y < 0.

Here, we still write the new parameters as aij , bij , ãij and b̃ij for simpler notations.

From the definitions (5) and (6) we compute for system (13) its crossing and
sliding sets in L:

LI
c = {(x, y) ∈ L| b̃11x2 > 0} =

{ {(x, y) ∈ L| x 6= 0} if b̃11 > 0,

∅ if b̃11 < 0,
(15)

and

LI
s = {(x, y) ∈ L| b̃11x2 ≤ 0} =

{ {(x, y) ∈ L| x = 0} if b̃11 > 0,

L if b̃11 < 0,
(16)

respectively. Then we find that the only solution of (7) for system (13) in LI
s is the

origin, which is a singular sliding point and also a boundary equilibrium because
the vector fields vanish at the origin.
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By an analogous analysis of system (13) we obtain for piecewise smooth system
(14) the crossing and the sliding sets in L:

LIII
c = {(x, y) ∈ L| b̃3x2 > 0} =

{ {(x, y) ∈ L| x 6= 0} if b̃3 > 0,

∅ if b̃3 < 0,
(17)

LIII
s = {(x, y) ∈ L| b̃3x2 ≤ 0} =

{ {(x, y) ∈ L| x = 0} if b̃3 > 0,

L if b̃3 < 0.
(18)

We also find that the origin of system (14) in LIII
s is a unique singular sliding point,

which is a boundary equilibrium.

Theorem 4. Piecewise smooth quasi–homogeneous cubic polynomial differential sys-
tems (II)-(V II) have no centers. Reduced piecewise smooth quasi–homogeneous cu-
bic polynomial differential system (13) from (I) has a center at the origin if and

only if b̃11 > 0, (2b12 − 1)2 + 8a12 < 0 (or a12 > 0, −1 + 2b12 < 0, or a12 < 0,√−8a12 = 2b12 − 1), (A11 − 2B12)
2 + 8B11 < 0 (or A11 − 2B12 ≥

√
−8B11) and

B11 < 0. The center of system (13) is global and the period function of the periodic
orbits is monotonic.

Proof. Obviously, systems (II), (IV )-(V II) have no centers. We consider the re-
duced systems (13) and (14) in place of (I) and (III). From the above mentioned
analysis of the sliding sets and singular sliding points on the discontinuous line L,
and by Theorem 1 systems (13) (respectively (14)) have a center at the origin only

if b̃11 > 0 (respectively b̃3 > 0).

For system (14) we calculate that

G+
III(θ) = s1Q

+(cos θ, sin θ) cos θ − s2P
+(cos θ, sin θ) sin θ

= 4 cos3 θ − 3 sin4 θ.

Then G+
III(θ) has real roots for θ ∈ [0, π] satisfying cos(θ) ≈ 0.639697327225298

or cos(θ) ≈ 2.16002341801127. Thus the origin of system (14) cannot be a center
according to Theorem 1.

For system (13) with y ≥ 0 we compute

η+I (0, 1) := s1xQ
+(0, 1)− s2yP

+(0, 1) = −a12 6= 0,

and
η+I (1, λ) = s1xQ

+(1, λ)− s2yP
+(1, λ) = 2 + (2b12 − 1)y2 − a12y

4.

Clearly, η+I (0, 1) 6= 0. Besides η+I (1, λ) has not real zeros if and only if (2b12 − 1)2 +

8a12 < 0, or (2b12−1)2+8a12 ≥ 0, a12(−1+2b12+
√

4b212 + 8a12 − 4b12 + 1)) < 0 and

a12(2b12−1−
√

(2b12 − 1)2 + 8a12) < 0, which can be reduced to (2b12−1)2+8a12 < 0,
or a12 > 0, −1 + 2b12 < 0, or a12 < 0,

√−8a12 = 2b12 − 1.

For system (13) with y < 0 we compute

η−I (0, 1) := s1xQ
−(0, 1)− s2yP

−(0, 1) = −1 6= 0

and

η−I (1, λ) = s1xQ
−(1, λ)− s2yP

−(1, λ) = 2B11 + (−A11 + 2B12)y
2 − y4.

Clearly η−I (1, λ) has not real zeros if and only if (A11 − 2B12)
2 + 8B11 < 0; or

(A11 − 2B12)
2 + 8B11 ≥ 0, −A11 + 2B12 +

√
(A11 − 2B12)2 + 8B11 < 0 and −A11 +
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2B12−
√

(A11 − 2B12)2 + 8B11 < 0, which can be reduced to (A11−2B12)
2+8B11 <

0; or A11 − 2B12 ≥
√
−8B11 and B11 < 0.

According to Theorem 2, if η+(1, λ) or η−(1, λ) has a real zero, there is an invariant
curve passing through the origin of system (13) and the origin cannot be a center.

Note that system (13) has a first integral

H̃+
1 (x, y) = (a12y

4 − 2b12xy
2 + xy2 − 2x2) e

−2arctanh







2a12y
2
−2b12x+x

x
√

4b212+8a12−4b12+1






(1+2b12)

√
4b2

12
+8a12−4b12+1

if y ≥ 0, and a first integral

H̃−
1 (x, y) = (A11xy

2 − 2B12xy
2 + y4 − 2B11x

2) e

2arctan







A11x−2xB12+2y2

x
√

−A2
11

+4A11B12−4B2
12

−8B11






(A11+2B12)

√
−A2

11+4A11B12−4B2
12−8B11

if y < 0. In addition we have

H̃+
1 (x, 0) = −2x2 e

−2arctanh







−2b12+1√
4b2

12
+8a12−4b12+1






(1+2b12)

√
4b2

12
+8a12−4b12+1 ,

and

H̃−
1 (x, 0) = −2B11x

2 e

2arctan







A11−2B12√
−A2

11
+4A11B12−4B2

12
−8B11






(A11+2B12)

√
−A2

11
+4A11B12−4B2

12
−8B11 ,

yielding that H̃+
1 (r0, 0) = H̃+

1 (r1, 0) and H̃−
1 (r0, 0) = H̃−

1 (r1, 0) for arbitrary r1 =
−r0 < 0. Therefore the center of the piecewise smooth quasi–homogeneous cubic
polynomial differential system (13) at the origin is global. This completes the proof
of the theorem for the system (13).

In the case a1 < 0, b1 > 0 and ã1 > 0, we prove that the center O1 at the origin of
piecewise smooth system (I) is not isochronous. For r0 > 0 we assume that Γr0 is
the closed trajectory through (r0, 0) inside the periodic annulus of the center O1, we
can define the positive half-period function as T+(r0) :=

∫
Γ+
r0

dt and the negative

half-period function as T−(r0) :=
∫
Γ−

r0
dt, where

Γ+
r0 =

{
(ρ, θ) ∈ R

2 | ρ = p+(r0, θ)} = {(x, y) ∈ R
2 | y =

(3b1
2a1

(x2 − r20)
) 1

3

}

and

Γ−
r0
=

{
(ρ, θ) ∈ R

2 | ρ = p−(r0, θ)} = {(x, y) ∈ R
2 | y =

( 3

2ã1
(x2 − r20)

) 1
3

}
.
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Thus the complete period function associated to the piecewise smooth system (I) is
given by the sum of these two functions

TI(r0) =

∮

Γr0

dt = T+(r0) + T−(r0) =

∫

Γ+
r0

dx

a1y2
+

∫

Γ−

r0

dx

ã1y2

=

∫ −r0

r0

dx

a1

(
3b1
2a1

(x2 − r20)
) 2

3

+

∫ r0

−r0

dx

ã1

(
3

2ã1
(x2 − r20)

) 2
3

= β0r
− 1

3
0 ,

where

β0 =
(2
3
)
5
3π

3
2

√
3

Γ(2
3
)Γ(5

6
)
(−a

− 1
3

1 b
− 2

3
1 + ã

− 1
3

1 ) > 0

and Γ(z) =
∫∞

0
e−ssz−1 ds is the Gamma function. Clearly the period TI(r0) of the

periodic orbits inside the period annulus of the center O1 is monotonic in r0. This
completes the proof of the theorem. �

Notice that all smooth quasi–homogeneous quadratic polynomial differential sys-
tems (i)− (iii) have no centers, because there exists an invariant straight line or an
invariant curve passing through the origin for such systems. However for the piece-
wise smooth quasi–homogeneous quadratic polynomial differential systems we will
find the existence of a center at the origin under some conditions on the parameter.

4. Global center for piecewise smooth quasi–homogeneous quartic

polynomial differential systems

According to Proposition 1 of [20] there exist 17 quasi-homogeneous but non-
homogeneous quartic polynomial differential systems. Fourteen of them either have
the invariant straight line x = 0 or y = 0. From the proof of Theorem 1 these four-
teen classes of piecewise smooth quasi-homogeneous but non-homogeneous quartic
polynomial differential systems cannot have a center at the origin. We consider the
following three remainder piecewise smooth quartic polynomial differential systems

(19)
ẋ = c1y

4, ẏ = x3 if y ≥ 0,
ẋ = C1y

4, ẏ = D1x
3 if y < 0,

with c1C1D1 6= 0, MWV = (5, 4, 12),

(20)
ẋ = c2y

4, ẏ = x if y ≥ 0,
ẋ = C2y

4, ẏ = D2x if y < 0,
with c2C2D2 6= 0, MWV = (5, 2, 4),

and

(21)
ẋ = c3y

4, ẏ = x2 if y ≥ 0,
ẋ = C3y

4, ẏ = D2x
2 if y < 0,

with c3C3D3 6= 0, MWV = (5, 3, 8).

After time rescalings and linear transformations (x, y, dt) → (x, y, d1dt), (x, y, dt) →
(x, y, d2dt) and (x, y, dt) → ((d3c

2
3)

1/3x/c3, y, d3dt/c
2
1), respectively.

Theorem 5. Only two classes of piecewise smooth quasi–homogeneous quartic poly-
nomial differential systems have a center at the origin. In particular reduced piece-
wise smooth quasi–homogeneous quartic polynomial differential system (19) has a
center at the origin if and only if D1 > 0, c1 < 0 and C1 > 0. Reduced piecewise
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smooth quartic quasi–homogeneous system (20) has a center at the origin if and only
if D2 > 0, c2 < 0 and C2 > 0. Both centers of system (19) are global and the period
function of periodic orbits is monotonic.

Proof. Obviously we only need to consider reduced systems (19)-(21) for the exis-
tence of centers at the origin. For system (21) we compute

G+
3 (θ) = s1ẏ cos θ − s2ẋ sin θ = 5 cos3 θ − 3 sin5 θ,

according to (8). It follows that G+
3 (θ) has real roots θ ≈ 0.9394265760 and θ ≈

2.201353768 for θ ∈ [0, π]. Therefore, by Theorem 1 the origin of system (21) cannot
be a center.

From above mentioned analysis of sliding sets and singular sliding points and
Theorem 1, on the discontinuous line L systems (19) (or (20)) have a center at the
origin only if D1 > 0 (or D2 > 0).

For system (19) and y ≥ 0 we compute

η+1 (0, 1) := s1xẏ − s2yẋ|(x,y)=(0,1) = −4c1 6= 0

and

η+1 (1, λ) = s1xẏ − s2yẋ|(x,y)=(1,λ) = −4c1y
5 + 5.

Clearly, η+1 (0, 1) 6= 0. Besides η+1 (1, λ) only has negative zeros if and only if c1 < 0.
For system (19) and y < 0 we compute

η−1 (0, 1) := s1xẏ − s2yẋ|(x,y)=(0,1) = −4C1 6= 0

and

η−1 (1, λ) := s1xẏ − s2yẋ|(x,y)=(1,λ) = −4C1y
5 + 5D1.

Clearly η−1 (1, λ) only has positive zeros if and only if C1D1 > 0. From Theorem 2
if η+1 (1, λ) has a non-negative zero or η−1 (1, λ) has a non-positive zero, there is an
invariant curve passing through the origin of system (19) and the origin cannot be
a center.

Note that system (19) has the first integral

φ+
1 (x, y) = 4c1y

5 − 5x4

if y ≥ 0, and the first integral

φ−
1 (x, y) = 4C1y

5 − 5D1x
4

if y < 0. Consequently we have

φ+
1 (x, 0) = −5x4

and

φ−
1 (x, 0) = −5D1x

4,

yielding that φ+
1 (r0, 0) = φ+

1 (r1, 0) and φ−
1 (r0, 0) = φ−

1 (r1, 0) for arbitrary r1 =
−r0 < 0. Therefore system (19) has a center at the origin if and only if D1 > 0,
c1 < 0 and C1 > 0, and this center is global.

In the case D1 > 0, c1 < 0 and C1 > 0 we prove that the center O1 at the origin
of system (19) is not isochronous and the period function of its periodic orbits is
monotonic. Assuming that Γr0 is the closed trajectory through (r0, 0) inside the
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periodic annulus of the center O1, we can define the positive half-period function as
T+
1 (r0) :=

∫
Γ+
r0

dt and the negative half-period function as T−
1 (r0) :=

∫
Γ−

r0
dt, with

r0 > 0. Thus we have

Γ+
r0
=

{
(ρ, θ) ∈ R

2 | ρ = p+(r0, θ)} = {(x, y) ∈ R
2 | y =

( 5

4c1
(x4 − r40)

) 1
5

}

and

Γ−
r0 =

{
(ρ, θ) ∈ R

2 | ρ = p−(r0, θ)} = {(x, y) ∈ R
2 | y =

(5D1

4C1
(x4 − r40)

) 1
5

}
.

Then the complete period function associated to system (19) is given by the sum of
these two functions

T1(r0) =

∮

Γr0

dt = T+
1 (r0) + T−

1 (r0) =

∫

Γ+
r0

dx

c1y4
+

∫

Γ−

r0

dx

C1y4

=

∫ −r0

r0

dx

c1

(
5
4c1

(x4 − r40)
) 4

5

+

∫ r0

−r0

dx

C1

(
5D1

4C1
(x4 − r40)

) 4
5

=

∫ −1

1

dx

c1(
5
4c1

)
4
5 r

11
5
0 (x4 − 1)

4
5

+

∫ 1

−1

dx

C1(
5D1

4C1
)
4
5 r

11
5
0 (x4 − 1)

4
5

= β1r
− 11

5
0 ,

where

β1 =

√
2π csc(π

5
) sin(9π

20
) Γ(11

20
)

2Γ(4
5
)Γ(3

4
)

( 1

C1(
5D1

4C1
)
4
5

− 1

c1(
5
4c1

)
4
5

)
> 0,

where Γ(z) =
∫∞

0
e−ssz−1 ds is the Gamma function. Clearly the period T1(r0) of

the periodic orbits inside the period annulus of the center O1 is monotonic in r0 and
then it cannot be isochronous.

For system (20) we compute

η−2 (0, 1) := s1xẏ − s2yẋ|(x,y)=(0,1) = −2c2 6= 0,

η−2 (1, λ) := s1xẏ − s2yẋ|(x,y)=(1,λ) = 5− 2c2y
5,

if y ≥ 0, and

η−2 (0, 1) := s1xẏ − s2yẋ|(x,y)=(0,1) = −2C2 6= 0,

η−2 (1, λ) := s1xẏ − s2yẋ|(x,y)=(1,λ) = 5D2 − 2C2y
5,

if y < 0. Using a similar analysis as the one done for system (19), we have that
η+2 (1, λ) only has negative zeros if and only if c2 < 0, and η−2 (1, λ) only has positive
zeros if and only if C2D2 > 0. Moreover system (19) has the first integral φ+

2 (x, y) =
2c2y

5 − 5x2 if y ≥ 0, and the first integral φ−
2 (x, y) = 2C2y

5 − 5D2x
2 if y < 0,

satisfying that φ+
2 (x, 0) = −5x2 and φ−

2 (x, 0) = −5D2x
2, yielding that φ+

2 (r0, 0) =
φ+
2 (r1, 0) and φ−

2 (r0, 0) = φ−
2 (r1, 0) for arbitrary r1 = −r0 < 0. Therefore system

(20) has a global center at the origin if and only if D2 > 0, c2 < 0 and C2 > 0.

In the case D2 > 0, c2 < 0 and C2 > 0 we assume that ζr0 is the closed trajectory
through (r0, 0) inside the periodic annulus of the center O2 at the origin of system
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(20), then we define the positive half-period function as T+
2 (r0) :=

∫
ζ+r0

dt and the

negative half-period function as T−
2 (r0) :=

∫
ζ−r0

dt with r0 > 0. Then we have

ζ+r0 =

{
(ρ, θ) ∈ R

2 | ρ = p+(r0, θ)} = {(x, y) ∈ R
2 | y =

( 5

2c2
(x2 − r20)

) 1
5

}

and

ζ−r0 =

{
(ρ, θ) ∈ R

2 | ρ = p−(r0, θ)} = {(x, y) ∈ R
2 | y =

(5D2

2C2
(x2 − r20)

) 1
5

}
.

Therefore the complete period function associated to system (20) is given by the
sum of these two functions

T2(r0) =

∮

ζr0

dt = T+
2 (r0) + T−

2 (r0) =

∫

ζ+r0

dx

c2y4
+

∫

ζ−r0

dx

C2y4

=

∫ −r0

r0

dx

c2

(
5
2c2

(x2 − r20)
) 4

5

+

∫ r0

−r0

dx

C2

(
5D2

2C2
(x2 − r20)

) 4
5

=

∫ −1

1

dx

c2(
5
2c2

)
4
5 r

3
5
0 (x

2 − 1)
4
5

+

∫ 1

−1

dx

C2(
5D2

2C2
)
4
5 r

3
5
0 (x

2 − 1)
4
5

= β2r
− 3

5
0 ,

where

β2 =
π

3
2 csc(π

5
)

Γ(4
5
)Γ( 7

10
)

( 1

C2(
5D2

2C2
)
4
5

− 1

c2(
5
2c2

)
4
5

)
> 0.

Clearly the period T2(r0) of the periodic orbits inside the period annulus of the
center O2 is monotonic in r0. This completes the proof of the theorem. �
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