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LIMIT CYCLES OF A SECOND-ORDER DIFFERENTIAL

EQUATION

TING CHEN1,2 AND JAUME LLIBRE2,∗

Abstract. We provide an upper for the maximum number of limit cycles
bifurcating from the periodic solutions of ẍ + x = 0, when we perturb this

system as follows
ẍ+ ε(1 + cosm θ)Q(x, y) + x = 0,

where ε > 0 is a small parameter, m is an arbitrary non-negative integer,

Q(x, y) is a polynomial of degree n and θ = arctan(y/x). The main tool used
for proving our results is the averaging theory.

1. Introduction

To determine the number of limit cycles of a differential equation is one of the
main problems in the qualitative theory of planar differential system. In 1881
Poincaré [6] defined the notion of limit cycle of a planar differential system as a
periodic orbit isolated in the set of all periodic orbits of the differential system.
And he defined the notion of a center of a real planar differential system, i.e. of an
isolated equilibrium point having a neighborhood filled with periodic orbits. Later
on one way to produce limit cycles is by perturbing the periodic orbits of a center,
see for instance the papers [7, 2, 4] and the references quoted there.

In [5] Mathieu consider the second order differential equation

(1) ẍ+ b(1 + cos t)x = 0,

where b is a real constant. It is called Mathieu equation, which is the simplest
mathematical model of an excited system depending on a parameter. The more
general Emarkov-Pinney equation is Mathieu-Duffing type equatoins

(2) ẍ+ b(1 + cos t)x− xβ = 0,

where β is an integer and b > 0. These equations describe the dynamic of a
system with harmonic parametric excitation and a nonlinear term corresponding
to a restoring force, see the papers [9, 10, 3, 8].

We shall study the limit cycles of a kind of generalization of the second-order
differential equations (1) and (2). More precisely, the objective of this paper is to
consider the second-order differential equations

ẍ+ ε(1 + cosm θ)Q(x, y) + x = 0,
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or equivalently its differential system of first order

(3)
ẋ =y,

ẏ =− x− ε(1 + cosm θ)Q(x, y).

We study the maximum number of limit cycles which can bifurcate from the center
of system (3) with ε = 0, where ε is sufficiently small and θ = arctan(y/x). More
precisely, we consider the planar vector field

χ = χ(x, y) = (y,−x),

and we perturb this vector field χ as follows

χε = χ(x, y) + ε(1 + cosm θ)(0, Q(x, y)).

The main result of this paper is the following. For a definition of averaged
function of first order see section 2 and [4].

Theorem 1. Assume that the average function f(r) of first order associated to the
vector field χε is non-zero and ε > 0 sufficiently small.

(a) If m is odd, the maximum number of limit cycles of χε bifurcating from
the periodic solutions of the center χ, is at most n− 1 using the averaging
theory of first order.

(b) If m is even, the maximum number of limit cycles of χε bifurcating from
the periodic solutions of center χ, is at most n− 1 or n− 2, when n is odd
or even, respectively.

Moreover these upper bounds are reached.

Theorem 1 is proved in section 3. Note that the maximum number of limit cycles
stated in Theorem 1 depend on the numbers m and n.

We provide a summary about the averaging theory for computing periodic solu-
tions of vector fields that we shall use for proving Theorem 1 in section 2.

2. Averaging theory for differential systems

In this section we recall some known results of the averaging theory that we shall
need for proving Theorem 1. For more details on the averaging theory see [4].

Consider a non-autonomous differential equation of the form

(4)
dr

dθ
= χ(r, θ) = εF (r, θ) + ε2R(r, θ, ε),

where r ∈ R, θ ∈ S1 = R/(2πZ). And F : D×S1 → R2, R : D×S1×(−ε0, ε0) → R2

are C2 functions, 2π-periodic in the variable θ and D is an open interval of R.

The averaged function f : D → R associated to system (4) is defined by

f(r) =
1

2π

∫ 2π

0

F (r, θ)dθ.

We called that if r(r0, θ) is the solution of the vector field χ(r, θ) such that r(r0, 0) =
r0, then we have

r(r0, 2π)− r0 = εf(r) +O(ε2).
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So for ε > 0 sufficiently small the simple zeros of the averaged function f(r) provides
limit cycles of vector field χ(r, θ). In order to study the simple zeros of the function
f(r) we shall apply the Descartes Theorem (for a proof see for instance [1]).

Descartes Theorem. Consider the real polynomial p(r) = ai1r
i1 + ai2r

i2 + · · ·+
ainr

in with 0 ≤ i1 < i2 < · · · < in and aij ̸= 0 real constants for j ∈ {1, 2, . . . , n}.
When aijaij+1

< 0, we say that aij and aij+1
have a variation of sign. If the number

of variations of signs in m, then p(r) has at most m positive real roots. Moreover,
it is always possible to choose the coefficients of p(r) in such a way that p(r) has
exactly n− 1 positive real roots.

3. Proof of Theorem 1

Assume that the polynomial Q(x, y) =
n∑

i+j=0

aijx
iyj . Doing the change of vari-

able (x, y) → (r, θ), where x = r cos θ, y = r sin θ, with r > 0, system (3) associated
to the vector field χε in coordinates (r, θ) writes

ṙ =− ε

n∑
i+j=0

Rij(θ)r
i+j ,

θ̇ =− 1− ε

n∑
i+j=0

Θij(θ)r
i+j−1,

where
Rij(θ) = aij(cos

i θ sinj+1 θ + cosi+m θ sinj+1 θ),

Θij(θ) = aij(cos
i+1 θ sinj θ + cosi+m+1 θ sinj θ).

Taking θ as the new independent variable the previous differential system be-
comes the differential equation

(5)
dr

dθ
= ε

n∑
i+j=0

Rij(θ)r
i+j +O(ε2) = εF (r, θ) +O(ε2).

Note that this differential equation is written in the normal form (4) for applying
the averaging theory of first order.

In our study we will use the following formulas for compute the averaged function.
The first formula is∫ 2π

0

cosp θ sin2q θdθ =
(2q − 1)!!

(2q + p)(2q + p− 2) · · · (p+ 2)

∫ 2π

0

cosp θdθ,

for more details of this integral and the other ones integral see pages 152-153 of
[11]. This formula is applicable for arbitrary real p and arbitrary positive integer
q, except for the following negative even integers p = −2, −4, . . . , −2n. If p is a
natural integer and q = 0, we have the formulas∫ 2π

0

cos2l θdθ =
(2l − 1)!!

2ll!
2π,∫ 2π

0

cos2l+1 θdθ = 0.
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We also have the formula

∫ 2π

0

cosp θ sin2q+1 θdθ = 0.

This last formula is applicable for arbitrary real p and non-negative integer q, except
for the following negative odd integers p = −1, −3, . . . , −(2n+1). Therefore, from
the previous section, we consider two cases and some subcases in order to study
the averaged function associated to the differential equation (5).

Case (a). Let m be an odd. Then we consider two subcases for studying the
averaged function.

Subcase (a.1). If n is an even, we have

f1(r) =
1

2π

∫ 2π

0

F (r, θ)dθ

=
1

2π

∫ 2π

0

n∑
i+j=0

[
aij(cos

i θ + cosi+m θ) sinj+1 θ

]
ri+jdθ

=
1

2π

∫ 2π

0

n+1∑
i+2q=2

[
ai,2q−1(cos

i θ + cosi+m θ) sin2q θ

]
ri+2q−1dθ

=
1

2π

[ n+1∑
2l+1+2q=3

a2l+1,2q−1r
2l+2q

∫ 2π

0

cos2l+m+1 θ sin2q θdθ

+

n∑
2l+2q=2

a2l,2q−1r
2l+2q−1

∫ 2π

0

cos2l θ sin2q θdθ

]

=

n/2∑
l+q=1

a2l+1,2q−1r
2l+2q (2q − 1)!!

(2q + 2l + 1)(2q + 2l − 1) · · · (2l + 3)

(2l +m)!!

2
2l+m+1

2 ( 2l+m+1
2 )!

+

n/2∑
l+q=1

a2l,2q−1r
2l+2q−1 (2q − 1)!!

(2q + 2l)(2q + 2l − 2) · · · (2l + 2)

(2l − 1)!!

2ll!

=

n/2∑
l+q=1

a2l+1,2q−1r
2l+2q (2l +m)!!(2q − 1)!!

2
2l+m+1

2 ( 2l+m+1
2 )!(2q + 2l + 1)(2q + 2l − 1) · · · (2l + 3)

+

n/2∑
l+q=1

a2l,2q−1r
2l+2q−1 (2l − 1)!!(2q − 1)!!

2l+ql!(q + l)(q + l − 1) · · · (l + 1)

=

n∑
k=1

Akr
k.
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Subcase (a.2). If n is an odd, we have

f2(r) =
1

2π

∫ 2π

0

F (r, θ)dθ

=
1

2π

∫ 2π

0

n∑
i+j=0

[
aij(cos

i θ + cosi+m θ) sinj+1 θ

]
ri+jdθ

=
1

2π

∫ 2π

0

n+1∑
i+2q=2

[
ai,2q−1(cos

i θ + cosi+m θ) sin2q θ

]
ri+2q−1dθ

=
1

2π

[ n∑
2l+1+2q=3

a2l+1,2q−1r
2l+2q

∫ 2π

0

cos2l+m+1 θ sin2q θdθ

+

n+1∑
2l+2q=2

a2l,2q−1r
2l+2q−1

∫ 2π

0

cos2l θ sin2q θdθ

]

=

(n−1)/2∑
l+q=1

a2l+1,2q−1r
2l+2q (2l +m)!!(2q − 1)!!

2
2l+m+1

2 ( 2l+m+1
2 )!(2q + 2l + 1)(2q + 2l − 1) · · · (2l + 3)

+

(n+1)/2∑
l+q=1

a2l,2q−1r
2l+2q−1 (2l − 1)!!(2q − 1)!!

2l+ql!(q + l)(q + l − 1) · · · (l + 1)

=

n∑
k=1

Ãkr
k.

Case (b). Assume m is an even, we consider the following subcases for studying
the averaged function.

Subcase (b.1). If n is an even, we have

f3(r) =
1

2π

∫ 2π

0

F (r, θ)dθ

=
1

2π

∫ 2π

0

n∑
i+j=0

[
aij(cos

i θ + cosi+m θ) sinj+1 θ

]
ri+jdθ

=
1

2π

∫ 2π

0

n+1∑
i+2q=2

[
ai,2q−1(cos

i θ + cosi+m θ) sin2q θ

]
ri+2q−1dθ

=
1

2π

[ n∑
2l+2q=2

a2l,2q−1r
2l+2q−1

∫ 2π

0

(cos2l θ + cos2l+m θ) sin2q θdθ

]

=

n/2∑
l+q=1

a2l,2q−1r
2l+2q−1 (2q − 1)!!

2q(q + l)(q + l − 1) · · · (l + 1)

[
(2l − 1)!!

2ll!

+
(2l +m− 1)!!

2
2l+m

2 ( 2l+m
2 )!

]

=

n−1∑
k=1

Bkr
k.



6 TING CHEN AND JAUME LLIBRE

Subcase (b.2). If n is an odd, we have

f4(r) =
1

2π

∫ 2π

0

F (r, θ)dθ

=
1

2π

∫ 2π

0

n∑
i+j=0

[
aij(cos

i θ + cosi+m θ) sinj+1 θ

]
ri+jdθ

=
1

2π

∫ 2π

0

n+1∑
i+2q=2

[
ai,2q−1(cos

i θ + cosi+m θ) sin2q θ

]
ri+2q−1dθ

=
1

2π

[ n+1∑
2l+2q=2

a2l,2q−1r
2l+2q−1

∫ 2π

0

(cos2l θ + cos2l+m θ) sin2q θdθ

]

=

(n+1)/2∑
l+q=1

a2l,2q−1r
2l+2q−1 (2q − 1)!!

2q(q + l)(q + l − 1) · · · (l + 1)

[
(2l − 1)!!

2ll!

+
(2l +m− 1)!!

2
2l+m

2 ( 2l+m
2 )!

]

=

n∑
k=1

Bkr
k.

Note that the coefficients aij of the vector field χε which appear in Ak (or Ãk,
or Bk) can be arbitrarily chosen. From the above expressions of the four subcases
we obtain that the averaged function f(r) is generated by a linear combination of a
set Fl = {r, r2 . . . , rl} with l ∈ {n− 1, n}. Using the Descartes Theorem, it follows
that f(r) can have at most n−1 (or at most n−2 when n and m are even numbers)
simple zeros. Therefore for ε > 0 sufficiently small the vector field χε can have at
most n− 1 (or n− 2) limit cycles. This completes the proof of Theorem 1.
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