ISOCHRONOUS CENTERS OF A LINEAR CENTER PERTURBED BY HOMOGENEOUS POLYNOMIALS*

J. CHAVARRIGA, J. GINÉ and I. GARCÍA.

Departament de Matemàtica, Universitat de Lleida.

Pl. Victor Siurana, 1. 25003, Lleida, SPAIN.

E-mail: dinamics@eup.udl.es

ABSTRACT

In this paper we study isochronous centers of two-dimensional autonomus systems in the plane with linear part of center type and non-linear part given by fourth and fifth degree homogeneous polynomials. We first found necessary conditions for such isochronous centers in polar coordinates. Finally we give a proof of the isochronicity of these systems using different methods.

1. Introduction

We consider the system

$$\dot{x} = -y + X_s(x, y) ,
\dot{y} = x + Y_s(x, y) ,$$
(1)

where $\cdot = \frac{d}{dt}$, being $X_s(x, y)$ and $Y_s(x, y)$ homogeneous polynomials of degree s, with s > 2.

The integrable cases for quadratic systems, s=2, and cubic homogeneous systems, s=3, have been studied by several authors, namely N.N. Bautin¹, J. Chavarriga², W.A. Coppel⁵, N.G. Lloyd⁶, V.A. Lunkevich⁷, D. Schlomiuck⁸ and H. Zoladek⁹. Some integrable cases of system (1) when s=4,5 have been determinated by J. Chavarriga ¹⁰ and ¹¹.

A center is isochronous if the period of all integral curves in a neighborhood of the origin is constant. The equations are most easily written when the arc length s is the variable

$$\ddot{s} + k^2 s = 0 \tag{2}$$

Key words and phrases: center-focus problem, integrable systems in the plan, isochronous center.

^{*}Research partially supported by a University of Lleida Project/93–3. 1991 Mathematics Subject Classification: Primary 34A05; Secondary 34C05.