NEW SYMMETRIC PERIODIC SOLUTIONS FOR THE
MAXWELL-BLOCH DIFFERENTIAL SYSTEM

MURILO R. CANDIDO!, JAUME LLIBRE! AND CLAUDIA VALLS?

ABSTRACT. We provide sufficient conditions for the existence of a pair of sym-
metric periodic solutions in the Maxwell-Bloch differential equations modeling
laser systems. These periodic solutions come from a zero-Hopf bifurcation
studied using recent results in averaging theory.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In nonlinear optics the Maxwell-Bloch equations are used to describe laser sys-
tems. These equations were obtained by coupling the Maxwell equations with the
Bloch equation (a linear Schrédinger like equation which describes the evolution of
atoms resonantly coupled to the laser field), see [1]. Now in MathSciNet appear
265 articles related with these equations, see for instance [4, 5, 6, 9, 10, 11].

Recently in [7] it was studied the weak foci and centers of the Maxwell-Bloch
system

U =—au—+v,
U =—bv+uw, (1)
w=—c(w—9) — 4uv.

For ¢ = 0 the differential system (1) has a singular line {(u, v, w)|u = 0,v = 0}; for
¢ # 0 and ac(d—ab) < 0 the differential system (1) has one equilibrium p, = (0,0, 9);
and for ¢ # 0 and ac(é — ab) > 0 the differential system (1) has three equilibria
p+ = (u*,v*,w*), p— = (—u*,—v*,w*) and py, where

. c(d—ab) c(6 — ab)

v 40 0T 4a

For a = 6 = 0 the differential system has the singular line L = {(u, v, w)|v = 0,w =
0}. The periodic orbits bifurcating from the equilibrium pg was studied in [2]. Here
we complete this study analyzing the periodic orbits which bifurcate form the other
two singularities.

, w* = ab.

We define a zero-Hopf equilibrium of a 3-dimensional autonomous differential
system as an equilibrium point having two purely conjugate imaginary eigenvalues
and a zero eigenvalue. The next result characterizes the zero-Hopf equilibria of
system (1) that lies over the singular line L.

Proposition 1. Consider a =6 =0, ¢c = —b, w € (0, 00) and
1
q+ = (12\/ b2 +w2,0,0> eL.
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The only zero-Hopf equilibria of system (1) in the singular line L are q .

Proposition (1) is proved in Section 2. Perturbing the condition a = § = 0
the line of singularity L disappears. However the next result shows that there are
two equilibrium points in L which produce an isolated periodic solution due to a
zero-Hopf bifurcation.

Theorem 2. Let w € (0, 00),

a 263(13,

b :bo —&C1 — 6262 + 63[)37

2a3b
c=—by+ec, +e%co+e? <a3—b3+ 2 0>,

w?
3a3w2

by

6=—c¢

with (ag,bo, bz, c1,c2) € R® and € a small parameter. Then for |e|# 0 sufficiently
small the Mazwell-Bloch differential system (1) has two symmetric isolated periodic
solutions bifurcating from the equilibrium points qx € L when € =0 and 2ascq (1 +
602/ (w? — 5b2)) >0

Theorem 2 is proved in Section 2.

2. THE PROOFS

Proof of Proposition 1. Consider q = (@,0,0) € L. In the following we discuss the
conditions for q being a zero-Hopf equilibrium point of system (1). The character-
istic equation at q is given as

—N2+ X (=b—c) + A (—bc —4u*) = 0. (2)

It is easy to check that equation (2) has the pair of pure imaginary roots iw (w > 0)
if and only if & = +4vb? +w? and ¢ = —b. d

Since system (1) is invariant under the transformation (x,y, z) = (—x, —y, z) we
proceed the proof only for the point q_.

Proof of Theorem 2. Assuming the conditions of Theorem 2 and translating q_ to
the origin of coordinates, the differential system (1) writes

ﬂ:v+53a23<\/b%+w2—2u>,

W o 2 _yp 2 3y,

v——§ bg + w? — bov + uw + €c1v 4 €7 cpv — £°b3v,

W =204/b3 + w? + bow — 4uv — eciw — e2cow (3)

_27b2 —1)+ o.)2 T byw ) — €4 a361w2 B 55 a302w2
bO bo

L0 (w?(bs — as) - 2a3b0)
bo




PERIODIC SOLUTIONS FOR THE MAXWELL-BLOCH SYSTEM 3

In order to write the linear part of system (3) into its Jordan normal form, we
do the linear change of variables (u,v,w) — (z,y, z) where

(u,v,w) = 2z— z _72(b0y+xw)
b b w ) y, W .
The differential system (3) becomes
N 2(wz — z) (2b3y + borw + yw?) _c1e(2boy +aw)  cae®(2bpy + aw)

T=—-w
/ w?/bg + w? w w
2b5 + w?) (boy + 1 2b
Lo a3 (20§ +w?) (boy xw)_iagw /b3+w2+b3 oy,
w3 2 w
Vb3 + w? N azcowe® /b2 + w? N azefy/b3 + w? (2a3b% + w?(as — bs))

4
2[)0 2b0 2b0w
2(x — b
J —wr (x — wz)(boy + 2w)

wy/bE + w?
L 2(wz — x) (2b3y + bozw + yw?) _c1e(2bpy +aw) c26%(2bpy + 1Ww)
B w34/b3 + w? w? w?

+€3 (b3w2(2b0y + 2w) —as (2b8y + 2b2 2w + boyw? + w4z))

azCiwe
+

)

+ crye + coye? — bgye®, (4)

A
azcre* B2+ w?  azeac® /B3 +w?  azeby/b3 + w? (2a3bf + w?(as — bs))
+ 2b + 2b + 2bgw? '

0 0 0

To study the periodic orbits of system (4) when 0 < |¢|< 1, we introduce the
cylindrical coordinates x = Rcos#, y = Rsinf and z = Z. Doing this transforma-
tion system (4) becomes

dR _ 2bgR® cos(8)(bo sin(20) + w cos(26))
dt w2/bE + w?
n 2boRZ (bg sin(20) 4+ w cos(26))

wy/bE + w?

+0(e)

=R(, R, Z),
do N 2R cos(0) (b3(— cos(20)) + b + bow sin(26) + w?)
Y
dt w2 /b3 + w?
2z (b3(— cos(26)) + b3 + bow sin(26) + w?) L0 5)
wy/bE + w?
20(97 R’ Z)7
dZ  2R?cos() ((2b3 + w?) sin(6) + bow cos(6))
dt w3 /b3 + w?
2RZ ((2b5 + w?) sin() + b 4
N ((2b% + w?) sin(8) + bow cos(6)) L0

~Z(0,R, 7).

Rescaling the variables (R, Z) of system (5) as R = 2r, Z = ez, and taking 6 as
the new independent we obtain the equivalent differential system

(zll;’ ZZ) =cF(r,z,0)+ EQFQ(T, z,0)+ 53F3(r, z,0) + 54F4(r, z,0) + (9(55), (6)
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where F;(r, z,0) for i = 1,...,4 are given in Appendix B.

Applying Theorem 3 from Appendix A to system (6) we calculate the correspon-
dent averaging functions

gi(r,z) = (0,0),
ga(r, z) = (0,0),

T (ag (b% + wQ) (2b%cl — 4b02\/m + cle) - 2b%r2>
gi(r,z) = <4ﬂa3rz\/W(5bg +w?) r

wb  bowb (b3 + w?)
27z

" bow’ (b2 + w?)

(aser (88 +?) (1208 + 130302 + 20*) — 20802 (503 + 4?) )

™

J’_—
bow®/bE + w?

(6b8 (cf + 422) + 2byw? (—b002 + 20? + 622) — 02w4) ))

(agcl (b% + w2)

(100 -+ 96w? + w*) — Br® (50 + 3%) )

(2b001r2 (565 + w?) — a3 (b + w?)

Note that the averaged equation gs(r, z) vanishes over the graph
Z={24=(a,B(a)) :a € RT} C U,
ascy (b% + w2) (2b8 + w2) — 2b%a?

373 . Furthermore the Jacobian matrix
4a3b0 (b% + w2)

where f(a) =

of g3 at z, is

0 0
Dg3 (Za) = _ 4byra 74a37r(b§+w2) . (7)
w3 \/bg+w2 w?

From (7) we have that A, = —4asm (b3 + w?) /w® # 0. This verifies the conditions
(¢) and (i) of Theorem 3. Thus we calculate the function f(x) and we get

fla) = mhoo (w2 (a2 - 2a3bgcl) — 2a3ciwt — 5b%a2)
e WP (B + w?) |
It is easy to check that f(«) has the positive zero

. 6b3 . 6b2
o = W\/2(13C1 <U_)2—5bg —+ 1> lf 2(1361 ((U2—5b% + 1 > O
Moreover, a* is a simple zero because f’(a*) = 4razbocy/w® # 0. Thus the result
follows from applying Theorem 3. This conclude the proof. O

APPENDIX A: AVERAGING THEORY

We consider differential systems of the form

X = Fo(t,x) 4+ eF1(t, x) + 2Fy(t, x) + 3 Fs(t, x) + *Fy(t, x) + °F(t, x,), (8)
with x in some open subset 2 of R", ¢t € [0,00), &€ € [—&q,&0]. We assume F; and
F for all i = 1,2, 3,4 are T—periodic in the variable ¢. Let x(t,z,0) be the solution

of the unperturbed system
5( = FO (t, X),
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such that x(0,z,0) = z. We define M (¢,z) the fundamental matrix of the linear
differential system
. OF(t,x(t,2,0
j = DRaltxtn0)
X

such that M(0,z) is the n x n identity matrix. The displacerment map of system
(8) is defined as

d(z,e) =x(T,2z,¢) — z. (9)

In order to have d(z, ) well defined we assume that for |¢|# 0 sufficiently small the
following hypothesis holds:

(H) there exists an open set U C 2 such that for all z € U the solution x(t, z, &)
is defined on the interval [0, (, .)) with ¢, o) > T

This hypothesis is always satisfied when the unperturbed system has a manifold
of T-periodic solutions. The standard method of averaging for finding periodic
solutions consists in write the displacement map (9) in power series of € as follows

d(z,¢) = go(z) + eg1(z) + 2ga(z) + 3gs(z) + 'g(z, €),
Where for i =0, 1,2, 3,4 we have

-1 yz'(T’ Z)

gi(z) = M(T,Z) il

)

being

vo(t,z) =x(t,2,0) — 2,

vi(t,z) :M(t,z)/0 M(r,2)"'Fi(7,x(7,2,0))dT,

va(t,z) =M(t,z) /0 M(r,z)"! l2F2(T7x(T,z,O)) + 2%(7,){(7}){, 0)yi1(r,2)

fo O

W (7—7 X(Ta z, O))yl (7—7 Z)2‘| dTu

2 (T7 X(T7 z, 0)))’1 (Ta Z)

y3(t,z) =M (t, ) /0 M(r,z)~! [GFg(T,x(T, z,0)) + Gaaix

82F1 2 6F1
+3 o (1,%(7,2,0))y1(7,2) +3a—X(T,X(T,Z,O))y2(T,Z)
O°F OPF
+ 355 (1, x(7,2,0))y1(7,2) © y2(7,2) + —3 (1, %(7,2,0))y1(7,2)* | dT,
0x ox
t
ya(t, z) :M(t7z)/ M(T,z)_1 24F 4 (7,x(7,2,0)) + 24%(7’,)((7,1‘,0))%(7, z)
0
9°F OF
+ 12W;(T,x(77 z,0))y1(r,z)? + 12872(77 x(7,2,0))y2(7, 2)
9°F O*F
+125 5 (o x(7,2,0)31(7,2) © y2(7,2) + 45 2 (1. x(7,2,0))y1 (7,2)°
OF O°F
+ 4371(7’ x(7,2,0))ys(7,z) + 33720(7’ x(7,2,0))y2(7, 2)?
9°F,
+4 (1,%(7,2,0))y1(7,2) © y3(7,2)

Ox?
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93Fg 9'Fo

6%, (rx(r2,0)y1 () © ya(7,5) + 7 (7 x(1,2,0)y1 (. 2)* | dr.

The functions g1, g2, g3 and g4 will be called here the averaged functions of order
1, 2, 3 and 4 respectively of system (8).

We say that system (8) has a periodic solution bifurcating from the point zg if
there exists a branch of solutions z(t,z(g), e) such that the displacement function
satisfies d(z(e),e) = 0 and z(0) = zo.

Let 7 : R™ xR?*™™ — R™ and 7+ : R™ x R*~™ — R™™™ denote the projections
onto the first m coordinates and onto the last n — m coordinates, respectively. For
a point z € U we also consider z = (a,b) € R™ x R"™™. Consider the graph

Z={2o=(a,B(a)):aeV}CU
such that m < n, V is an open set of R™ and 8 : V — R" ™ is a C* function.

The next theorem provides sufficient conditions for the existence of periodic
solutions of the differential system (8) when the set Z is a continuum of zeros to
the first non vanishing averaged equation.

Theorem 3. Let r € {0,1,2,3} such that r is the first subindex such that g, Z 0.
In addition to hypothesis (H) assume that

(i) the averaged function g, vanishes on Z. That is g,(z4) = 0 for alla €V,
and
(i1) the Jacobian matriz

Ay Ty
peie) = (37 1),

where Ay = Damgr(24); Ta = Dpmgr(24), Ba = Domtgr(24) and A, =
Dyt g,(za), satisfies that det(A,) # 0 for alla € V.

We define the function

f(a) = _FQA;IWLgT+1(ZOé) + 7Tg7“+1(za)7
Then the following statements hold.

(a) If there exists a* € V such that f(o*) = 0 and det (Df(a*)) # 0, for
le|#£ O sufficiently small, then there is an initial condition z(e) € U such
that z(0) = zo~ and the solution x(t,z(e),e) of system (8) is T-periodic.

For a proof of Theorem 3 see [4]. The ideas of the proof were first presented in
[8].

APPENDIX B: THE FUNCTIONS F;(r, 2,0) FOR i = 1,2,3, 4.

In the following functions we take S = sinf#, C' = cosf, Sy = sin(20), Cy =
cos(20) and C3 = cos(30).

_ 2r /12 2 2 (72 2
Fl(r, Z, 0) = (W <2bOZ —C1 bO + w > (bOSQ + LL)OQ) — asw (bo +w ) C, 0
1 1
Fo(r,z,0) = <4w4 (’”(57(2)"'002) (wS (agw (bg + w2) + 4rC (c“/bg +w? — 2boz>>
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+ 2bgci7y/ b% 4+ w2 +2byrCy <2boz — cu/b% + w2) —4rz (bg + w2))
<a3w2 (bg + w2) C—2r <2b0z —c1\/ Vg + w2> (boSo + wC'g))

2w

_"_7
bo\/b(2)+w2
—2borw | ca1/b% + w?(by Sy + wC —l—brC)) ,;
0 (2\/0 (boS2 2) 4 borCs3 RN

(25 (—bocm/b% + w2 4 2022 —|—w2z) +wC (2boz — 14/ b2 —|—w2)> >7
1 1
F )= | —| ———=12r ( 2bpz — \/b2 2) (b
3(T7Z3 ) (40.)5 (27’20.)\/1)(2)—’—70.)2( T'< 02 C1 0+W>(052
C. 2+ o L S b+ w?
+ wCs) — azw” (b3 + w?) e wS | azw (b§ + w?)
+4rC (Cly/b% +w? — 2boz> ) + 2bgeyry /b3 4 w? + 2borCy
2
2rw
200z — ¢ b2+w2>—47°z b2—|—w2> -
(2 = G+))
(—wS (a301w2 (bg + w2) — 4bocary /b3 + w?

(boS + wC)) + 4bor? (205 + w?) S2C + 8bgr*wSC? + 4byr*w?C?))

(C (b5 (ascrw?® — 2r’w) + azerw” — 4bgr?Ss)

1
+ W (wC (4b(2)7°202 — azcw? (bg + w2)) + 8b3r2SC?
+2bgcarwy/ b + w?(boSa + w02)> (wS (asw (b + w?)
+4rC <81 A/ bg + w2 — 2b02>> + 2bgcyryy/ b% + w? + 2bgrCo
2w
(2()02 —c1\/ b3 + w2> —drz (b% + w2)> + T
(—4a3bger2 +asC (czw‘l\/b% +w? — 4bérS)

—boT‘wQ((ag — 2b3)(b052 + wCQ) + agw)) ) ,

1 w 3 (2 \/7 5
P bsc1 — 2b b2 2

2w <b0 B2+ w? (CLSW ( 0C1 024/ b + w? + ciw

— 2bocarw? [ bF + w2C' — dbor (bocw by + w2S

7 (26 + w?) SC + borwC?) ) - ﬁ (25
0

(—bocm/b% 4+ w2 + 2b3z + w2z> + wC <2boz — /B + w2> )
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(wS (agw (bg + w2) + 4rC <c“/b(2) 4+ w2 — 2b0z>>
+ 2bgc17/ b3 4+ w? + 2berCy <2boz —c1y/ b3 + w2> —drz (b + w?) )) >,
1 1
Fy(r,z,0) = <4W4\/W ( — 2¢303 (bg + w2) Cw? + - <203er’2 + (6253\/63 + w?

—2bg (b3 — c3)rS) C + 2b37°w52) (—4rzw202 - S (b0(53 (b% + wz)

+2rwC (4boz +(by —c1)y /b2 + w2> +2rS (421)3 + (b1 — c1)y/ b2 + w?by + 2zw2>)>
1

+ 3723 (—4b0r2wC3 —2r (47"5()3 + cow? /b + w2> c?—w (—4b0r252

—2bo(by — c2)T4/b2 + w2S + 103 (bg + w2)> C — 2byrw? /b2 + w252>
1

(W <4rzw202 + S <b063 (bg + w2) + 2rwC (4[)02 +(by —c1)y /b2 + w2)

2
2rw
2 _ 2 2 2 _ATW 9 943
+2rS <4zbo—|—(b1 c1)4/ b5 + w2by + 22w ))) + \/b(z)+—wQ( drew?C
— 8bgriwSC? — S <2 (ng + w2) Sor? — 2bg(by — c2)wy/ b2 + w2Sr
1
+c163w (b + w?)) + (ba — ca)rw?®Say /b2 + w2)> ~ B <2rw (2602 —c1y/ b3 + w2>
C? + b ((53 (bg + w2) +2rS (41)02 +(by — 1)y /bR + w2)> C — 2rw (2bgz
+b1(/ b2 + oﬂ) 5'2> (—47“25’ (2(b3 — ¢3)rwC + 2bg(bs — ¢3)1S — 2034/ b3 + w2) w?
2rw
+W <4rzw2C2 +S <b053 (b + w?) +2rS (4zb3 + (by — c1)y/ b2 + w?by
—|—2zw2)) + 7wSs <4b0z + (b1 — 1)/ V% + w2)> (47‘2w2C’3 + 8byr2wSC? + wS
<01(53 (bg + wz) — 2bo(ba — c2)ry /b3 + wQS) +r ((02 — o)1 /b3 + w2w? + 2r (2b(2J + w2)

5)s2) + (—4r2w2C? — 8 (bods (B2 + w?) + 2rwC (4bo2

1
\/b8+w2

1
+(b1 — 1)y /R + w2> +2rS (421)3 + (b1 — 1)/ b3 + Wby + 22w2>)> (b% T2
<4Tzw202 +S (b053 (b5 + w?) + 2rwC <4b0z + (b1 — cl)\/b%)+7>

2

2rw
2 _ /12 1 2 2 42, 2013
+2rS(4zb0+(b1 c1)4/ b + w2by + 22w ))) + T w2< drewC

— 8byr?wSC? — S (2 (2b8 + w2) Sor? — 2by(by — c2)wy /b2 + w2Sr +
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163w (b5 + w?)) + (b2 — c2)rw? 2/ b3 + w2>>) )

1 1
2w3 2rw3 (b + w?)

<4bor2wC2 + 2r ((02 — az)y/b3 + ww? + 2r (Qb% + w2) S) C

+w (0163b(2) —2(by — c2)ry /b3 + w2Shy + w? (clég + 2a3z1/b% + w2>)>
<47’zw2C2 + S <b0(53 (bg + wz) + 2rwC <4boz + (by —c1)y /b2 + w2)

+2rS (4zbg + (by — 1)1/ b2 + w2by + 2zw2>)> - W (azw!

+ azbfw? + bodsw? — 2a921/ b + ww? + 2rC <2boz —c1y/ b3 + w2) w + b3d3
+2rS (4zb(2] + (b1 — 1)/ b2 + w?bo + 22w2>) <b2 ! (47’zw202 +S
<b063 (bg + w2) + 2rwC <4b0z + (by —c1)y /b2 + w2> +2rS (420

(b1 — 1)1/ b% + w?bo + 2zw2>)>2 + \/b?iiuﬂ (—4r°w?C? — 8bgr’wS
c?-9 (2 (2b(2) + w2) Sor? — 2bo(by — ca)wy/bE + w2 Sr

+e183w (b + w?)) + (b — c2)rw?Say /b3 + w2)> + w

( — 2a3rwC + 2c3rwC — 2bgbsrS + 2bgcsrS +

8r3wt
(—47‘25 (2(()3 — c3)rwC + 2bg (b3 — c3)1S — 2034/ b3 + w2> w?
2rw

b2 (4rzw202 +S (b063 (bo + w2) +2rS (4zb(2)

+(b1 — 1) 62 + w2b0 + 22w2>) + rwSsy <4b0z +(by —c1)y /b3 + w2>)

(4T2W2C3 + 8b07’ CL)SCQ + UJS (0153 (b(z) + UJ2) — 2b0(b2 — CQ)

T\/bg+w25>+’r<02—b2\/ + w2w? +2r (2 0+w2)5)52>

1

_i'_i
V0 + w?
+(by — cl) b2 —I—w +2rS (4zb0 + (b1 — 1)y /b2 + w2bo —|—2zw2>>>

1 212 2 2
(W (47“ZW "+ 5 (b053 (b5 +w?) + 2er’(4boz

2
+(b1 — c1)y/ b2 +w2) +2rS (4zbg + (b1 — e1)y/ b2 + w2bo —|—2zw2>>>

2rw

+7
Vb3 + w?

(—4rzw - S (b053 (bo +w? —|— 2rwC (4boz

(—4r?w*C?® — 8byr*wSC? — S (2 (20§ + w?) Sar?
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—2bg(by — ca)w1/ b3 + w2 ST + 183w (bg + w2)> + (by — cz)erSQ\/bg + w2>)>

+ 2034/ b3 +w2)>.
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