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LIMIT CYCLES VIA HIGHER ORDER PERTURBATIONS FOR SOME
PIECEWISE DIFFERENTIAL SYSTEMS

CLAUDIO A. BUZZI, MAURICIO FIRMINO SILVA LIMA, AND JOAN TORREGROSA

ABSTRACT. A classical perturbation problem is the polynomial perturbation of the har-
monic oscillator, (2',y') = (—y +ef(z,y,€),z + eg(z,y,€)). In this paper we study the
limit cycles that bifurcate from the period annulus via piecewise polynomial perturba-
tions in two zones separated by a straight line. We prove that, for polynomial perturba-
tions of degree n, no more than Nn — 1 limit cycles appear up to a study of order N. We
also show that this upper bound is reached for orders one and two. Moreover, we study
this problem in some classes of piecewise Liénard differential systems. When we restrict
the analysis to some special class this upper bound never is attained and we show which is
this upper bound for higher order perturbation in . The Poincaré—Pontryagin—Melnikov
theory is the main technique used to prove all the results.

1. INTRODUCTION

In last decades, piecewise differential systems have been useful for modeling real pro-
cesses and different modern devices. For simplicity also the linear piecewise differential
systems provides adequate models with very accurate results close to the observed data.
See for more details in [7, [0]. Although in recent years these systems have attracted a
good deal of attention, the first stages of modeling with piecewise systems started with
Andronov and coworkers, see [2].

In this paper, we study the number of isolated periodic orbits, the so called limit cycles,
of a polynomial piecewise perturbation of degree n of a linear center when the separation
curve is a straight line X passing through the center. That is, we consider systems written
as

N N
W)= (= Gy + LR ) gy + Do ) ()

such that the unperturbed system has a center at (z.,y.) with H a quadratic polynomial
and the perturbations f* and g are polynomials of degree n defined in each side of ¥.
Via an affine change of coordinates, if necessary, it is not restrictive to assume that we are
studying the piecewise polynomial perturbation of the harmonic oscillator. Consequently,
we consider the above system in the form

@) = (—v+ @)+ 3o, 2

with f* and g polynomials of degree n defined in % = {(z,y) € R? : £y > 0}. This
problem, for non piecewise perturbations, was studied by Iliev in [16], proving that the
number of limit cycles is bounded by [N (n — 1)/2]. In this paper, we prove by induction
on the degree n that, in the piecewise case, the upper bound is approximately doubled.
In the full paper [-] denotes the integer part function.
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The main tool used in this paper will be the Poincaré—Pontryagin—Melnikov technique.
In this theory the limit cycles bifurcate from the level sets of a Hamiltonian H. More
concretely, from the closed level sets that does not have equilibrium points. For system
([2), the limit cycles 7.(r) bifurcate from the level set ¢, = {2? + y*> = r*}. That is,
v:(r) tends to ¢, when € goes to 0. Here, this type of periodic orbits, with » > 0, are
called limit cycles bifurcating from the period annulus of the center. It is clear that, for
e small enough, this type of solutions of are well defined in the complement set of
any neighborhood of the origin. We can say that these periodic orbits are away from
the origin. Then, the Filippov convention is not necessary here, see [9]. In Section [2| we
explain it with more detail and we recall the necessary results of this theory for proving
our main goals.

Next result provides upper bounds for the number of limit cycles bifurcating from the
period annulus of the harmonic oscillator with piecewise polynomials of degree n.

Theorem 1.1. The maximum number of limit cycles of system bifurcating from the
unperturbed period annulus is at most n up to order 1 and at most Nn — 1 up to order
N > 2, n > 1. Moreover, there exist perturbation parameters such that for orders 1 and
2 the upper bounds are reached.

The Poincaré—Pontryagin-Melnikov technique provides a function, My, for each per-
turbation order and the isolated periodic orbits are given from the simple zeros of it. The
study of the number of zeros can not be done in general because of the difficulties to find
explicitly the functions My. There are few papers dealing with this objectives, see for
example [3] [14], [16]. The upper bounds for the number of limit cycles up to order N are
given by the number of simple zeros of My and, from the upper bound presented in the
above result, it seems that this number always increases with N. This is not the case for
degree n = 1 perturbations in piecewise continuous and piecewise sewing, see [13] and
[21], respectively. The study up to order seven and for general piecewise perturbation of
degree 1 is done in [4], where it is proved that the increasing sequence of zeros is 1, 1, 2,
3, 3, 3, 3. Quadratic and cubic perturbations up to order 5 are studied in [23], where the
authors prove that there exist polynomial perturbations such that My has 2, 3, 5, 6, and
8 simple zeros for n = 2 and 3, 5, 8, 11, and 13 for n = 3. Another example exhibiting 3
limit cycles for the quadratic family is given in [20].

It is clear that the study about how the number of limit cycles increases with the
perturbation order is far to be solved, even in the case of small degrees. Only for some
special families this problem can be solved. For example, if we consider the non-piecewise
perturbation of the harmonic oscillator in the Liénard family,

(o', y) = (— Y+ ieiﬁ(az),x),

with f; polynomials of degree n. In [14] it is proved that all the functions My has the
same number, [(n — 1)/2], of simple zeros than M;. For the classical Liénard family
(«',y") = (—y + f(x),x), Lins, de Melo and Pugh conjectured in [I9] that the maximal
number of limit cycles is exactly [(n — 1)/2]. Zuppa in [24] proved this conjecture for the
limit cycles bifurcating from the origin via degenerate Hopf bifurcation. The conjecture
is also true for degree n = 4, see [1§], but it fails for higher degrees, see [6] and [§].

As in the smooth case, the upper bounds will not be reached in general. But this is a
question not solved yet even for the smooth case. The general study of the zeros of the
Melnikov functions up to any order is also very difficult to be done for a polynomial family
of degree n. So, it is quite natural to restrict our attention to study only some special
families under piecewise perturbation. In what follows, we present some results about the
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number of limit cycles in some piecewise Liénard families. This kind of problems were
also treated in [5] using Lyapunov quantities and in [I7] for rational Liénard systems.
Recently, Sheng in [22] uses Melnikov functions to study also the number of limit cycles
for other piecewise Liénard families.

In this work line we present our main results. First, in Theorem [I.2] we deal with
a Liénard family where the upper bounds given in the above theorem are decreased
and achieved for perturbations of first and second order. Next, adding some symmetry
hypothesis, we can prove, in Theorem [I.3] that no limit cycles appear or the number
of limit cycles up to any order of perturbation coincides with the ones bifurcating from
the first order. Finally, changing the discontinuity line, from the x-axis to the y-axis, in
Theorem we prove that the Melnikov functions of any order have the same aspect
and the upper bound is reached always. In this case we have proved that the number of
limit cycles does not increase with the order of perturbation.

Consider now,

(@)= (—y+ i_vjs"ff(x),x>, 3)

defined in ©F = {(z,y) € R?: £y > 0}, where f;* are polynomials of degree n.

Theorem 1.2. The mazximum number of limit cycles of system bifurcating from the
unperturbed period annulus is at most [(n — 1)/2] and n + [(n — 1)/2] for orders 1 and
2, respectively. Moreover, there exist polynomials fii such that for orders 1 and 2 these
upper bounds are reached.

Theorem 1.3. (a) When fii are even polynomials, then system has a center at the
origin for every €.

(b) When fijE are odd polynomaials, the mazimum number of limit cycles of system
bifurcating from the period annulus is at most (n—1)/2 up to any order of perturbation.
Moreover, there exist polynomials fijE such this upper bound is reached.

Last result deals with system but changing the separation line to the y-axis. In this
case, consider the system

(@y) = (—y+ XN; ) )) ()

defined in X7 = {(z,y) € R?: £2 > 0}, where f;° are polynomials of degree n.

Theorem 1.4. The maximum number of limit cycles of family bifurcating from the
period annulus is at most n up to any order of perturbation. Moreover, there exist poly-
nomials f= such that the upper bound is reached.

The paper is organized as follows. In Section [2f we introduce the main tools for proving
all the results. Section [3|is devoted to the proof of Theorem first proving the upper
bounds and second providing explicit examples exhibiting that number of limit cycles.
The upper bounds are proved by induction on the degree of the perturbation. Sections [4]
and [b] deal with the proofs of Theorems [1.3] and [I.4] Finally, in Section [0] we study
higher order perturbations for some fixed families, but for small values of n. First, we
show that the number of limit cycles provided by Theorem does not increase up to
order 4. This is done in Proposition [6.1] Second, for a generalized Liénard family and
up to order 5, we show that the number of limit cycles increases with the perturbation
order but not as Theorem says. This is done in Proposition [6.2l The conclusions of
these results suggests that the stabilization of the number of limit cycles also occurs in
piecewise differential systems.
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2. THE RETURN MAP AND THE POINCARE-PONTRYAGIN-MELNIKOV FUNCTIONS

This section is devoted to present the main tools that we need to state and prove the
results of this paper. We closely follow the presentation in [I5], which decomposes an
arbitrary one-form in polar coordinates. It is based on the decompositions introduced by
Frangoise in [10} 1], 12]. This procedure is also used in [4], but only for piecewise linear
differential systems.

The vector field X given in (1)) with the separation line ¥y = {(z,0) : € R}, in polar
coordinates (z,y) = (rcosf,rsinf), can be written as

N N
( RS (r,0),1+ > 0] (r, 6)) if 0 € [0, ),
=1 i=1

1=

N N
(Z e'R; (r,0),14+ > 07 (r, (9)) if 0 € [r,2m),
i=1 =1

(2

(7;7 ‘9) = (5)

where R, ©F are analytic functions in r, sin and cosf. The above system can also be
expressed as

N
dH + > c'wl =0 if0el0,m),
& (6)
dH + > cw; =0 if 0 € [m 2n),

i=1
where H(r) = (22 + y?)/2 = 1?/2, and w;® = wi(r, ) are analytic one-forms, 27-periodic
in 6 and polynomial in r.

We denote by X* each vector field defined in ¥ = {(z,y) € R? : +y > 0}.
Clearly, we need to define X in the separation line ;. We say that a solution of the
above vector field, X*, is of sewing type if when it crosses the separation line, 3, satisfies
that X*-(0,1) and X~ -(0, 1) have the same sign in the intersection points with 3. When
this is not the case we can use the Filippov convention, see [9], to define the vector field
over such special points in ¥y. These points define the so called sliding set. In this paper
we are dealing with isolated periodic orbits bifurcating form a center. So, by continuity,
we are interested only in the so called limit cycles of sewing type. The periodic orbits
that cross the sliding set will be studied in future works. This is the reason why we do
not detail more such special solutions.

We define straightaway the main tool used in this paper: the Poincaré map. Let r* (0, p)
(resp. 77 (6, p)) be the solution of X such that r*(0,p) = p (resp. r~(m, p) = p). Then,

we define the positive Poincaré half-return map as 7%(p) = r*(m, p) and the negative
Poincaré half-return map as wy(p) = r~(2m,p). The complete Poincaré return map

associated to X is given by the composition of these two maps

mx(p) = Tx (7% (p)),

see Figure (a). We can also write them, for system , as a power series in € as

N N
m5(p.g) =p+ Y _e'pf(p), and mx(p.g)=p+ Y c'pilp).
=1 i=1

It is important to mention that both maps, 7% and 7y, are analytic in p and ¢, so the
complete Poincaré map associated to X is also analytic.

The result below relates the half-return map on X, of the vector field X with the
half-return map on X7 of the transformed vector field R(x) which is defined by the
reversibility property. That is, for each solution y(t) = (z(t),y(t)) of X then R(~(t)) =
(x(—t),—y(—t)) is a solution of R(X). The proof follows directly from the reversibility
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property. Moreover the study of the number of zeros of the displacement map, 7wx(p) — p,
is easier.

Lemma 2.1. The first non-zero term of the map wx(p) — p coincides with the first non-
zero term of the map

T3 (p) — (7)™ (p) = 7% (p) — Thx) (),

where R(X) = (—P(z, —y), Q(z, —y)) for X = (P, Q). See Figure[]|(b).
From the above result we can study the general expression for ' in the region ¥} and

then, using the reversibility property, we can get r~ from r*. In other words, we only
need to consider 6 € [0, 7).

; mx () % (p)
0 (%) (p) 0 P

FIGURE 1. (a) Return map and (b) half-return maps 7% and (7)™ =
7772()() of system ()

Now, we recall the decomposition of a one-form given in [I0] and the extension to piece-
wise differential forms, in polar coordinates, in [15] to the computation of the Poincaré
map. The initial value problem

(@', y) = (~y +eP(z,y,¢), 2 +eQ(7,y,€)), (2(0,¢),y(0,¢)) = (p,0),
where P and () are smooth functions, can be written, using usual polar coordinates
(z,y) = (rcosf,rsinf), as
N
dH + Y elw; =0,
= @

r(0,,p) = p.
Here H(r) = r?/2 and w; = w;(r,6) are smooth one-forms 2m-periodic in 6. The solu-

N
tion r(0, ¢, p) of writes as (0, ¢,p) = >_ri(0, p)e’ and it can be easily checked that
i=0

(0,0, p) = ro(6, p) = p. See Figure [

FI1GURE 2. Solution of equation for £ small enough

The next result follows straightforward from the decompositions of [10] 1T}, 12].
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Lemma 2.2. Let Q = «(r,0)dr+ B(r,0)dd be an arbitrary analytic one-form, 27-periodic
in @ and H(r) = r?/2. Then there exist functions h(r,0), S(r 9) cmd F(r) also 2m-periodic

in 0 and defined by F(r) = 5= 5”6( Y)dip, S(r,0) fo —F(r)8 and h(r,0) =
(04(7“, g) — 2r0) ) JH'(r), such that Q = Q° + Q' where QO = hdH +dS, Q' = F(r)do,
and fH:p2/2 =0, fH:p2/2 ot = fH:p2/2 Q

Next proposition allow us to obtain r;(6, p) for every i from the decomposition of a
one-form given in lemma behind, see [I5]. Although it is a direct consequence of the
results in [I5] we have included it by completeness and because the way of writing the
function r; is much more explicit and clear.

N
Proposition 2.3. Let r(0,¢,p) = Zn(@ p)e' be the solution of (7). Assume that, from

the decomposition given in Lemmam the functions F;(r), hi(r,0), and S;(r,0) are defined
inductively as hg = 1 and —€); : Z wihi—; = hydH + dS; + Fid0, fori=1,...,N. If

j=1
the functions ro(0, p) = p, and (0, p), for i =1,..., N — 1 are known, then

N 1

pm(@p———znepmwp)w /g (p.0)dw,  (8)

where S = (Sy,...,9x) and F = (Fy,...,Fy). The operator G on f = (f1,...,fn) is
defined by

N—1N—¢
G(F)(p.0) = fn(p,0)+ DD Difi)(p.0) > (0, p)ri=(0.p) - 1(0, p)
=1 j=1 my+2mo+---+Lmy=N—i

mi+mo+-tmy=j

with Di(g)(p.0) = 552 .

The above result applied to the computation of the first terms in the Taylor series in ¢
of (6, p, €) gives

pri(0,p) =Si(p,0) + Fi(p)0,
0
pra(0,p) = — %m(& p)> + Sa2(p, 0) + Di(S1)(p, 0)r1(0, p) + Fa(p)0 + Fi(p) /0 (¥, p)dy,

with D1 (S))(p,0) = 2202

T’:p'
Proof of Proposition[2.3. From Theorem 2.4 in [I5] and all the notation of the statement
we have that for any N € N, (6, ¢, p) satisfies the following implicit equation

N

2 _ 2 , 4
r (975’2/)) oy e (/0 Fi(r(, ¢, p))dis + Si(r(w,e,p),w)%:ﬁ)+O€N+1. (9)

i=1

N
First we substitute (6, ¢, p) = >_ 7;(6, p)e* in the above equation. The proof follows, by
i=0
induction, equating the coefficient of € in both sides of equation @ O
Remark 2.4. The functions h and S given in Lemma[2.9 are not unique. In fact, for a
fized pair h, S such that Q@ = hdH + dS + F(r)df we have 2 = hdH + dS + F(r)df with
h=h—f'(r)/r and S = S+ f(r) for any function f(r). The new decomposition satisfies
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also that %, S are 2m-periodic in 0. In particular, the conclusions of the above proposition
does not depend on which decomposition is used.

Using the notions and results introduced until now, we can state the main result used
in the next sections, the so called Poincaré—Pontryagin—l\/[elnikov functions. The solution

of system (6]) in power series in ¢ writes as r*(6,¢,p) = ZT (0, p)et, and it can be

easily checked that 7%(0,0, p) = 75 (0, p) = p. Lemma [2.1] and Proposmon allow us to
compute r; £(0, p) for every value of §. Consequently the first non- Vamshmg term of the
complete return map far from the sliding segment is obtained from the next result.

Proposition 2.5. Denoting by ]/\/[\N(p) =ri(m, p)—ry(=m,p), the Poincaré-Pontryagin—

Melnikov functions, or Melnikov functions for shortness, of order N, for system , are
given by

o~

M, (p) = M. d My(p) = M N > 2.
1(p) 1(p) and My(p) ~(p) (Mu(o)=0 kel N1} for N >

Moreover, for e small enough, each simple zero, p, of Mn(p) gets a limit cycle of sys-
tem . The limit cycle bifurcates from the level curve x* + y? = p?.

We remark that the above proposition provides the functions ]\//Tk(p), in terms of the
coefficients of the perturbations, for every order k. But only coincides with the Melnikov
function of a fixed order N when the previous ones vanish identically.

This section ends with two technical results that they will be useful for the explicit
computations in the next sections.

Lemma 2.6. The next properties hold.

(1) sy = % OQW sin® hdyp = k,, 5, where 0 = {

2

(2) cp = 5= [;" costp dip = sy
(3) Sk(0) = fo sin® ¢ dip — 540 has the form pi(cos®) if k odd or py_i(cosf)sin@ if k
even, where p; is a polynomial of degree j in cos6. In particular, Si(6) is 2m-periodic.

1, if k is even,

0, ifk is odd.

(4) Cr(0) = foe cos® 1 dip—cy0 is a 2m-periodic function and it can be written as py_1(cos ) sin 6
with pr_1 an even (odd) polynomial of degree k — 1 when k odd (even).

(5) Sk = o fo27T sin® ¢ Sp(v) dyp = kk& ne gull)nfskéé where §p =

(6) cre = 2= 3" cos® 1 Co()) dip = 0.

(7) Ske(0) = foe sin® 1 Sy(v) dp — 81,40 is a 2m-periodic function.

(8) Cru(0) := f: cos® 1 Co (1) dip is a 2m-periodic function and it can be written as py.e(cos 6)
with prye a polynomial of degree k + (.

(9) sp = 5= 02” sin® 0 cos 0 Sy(0) df = k%l(s;ﬁls@ — Sktt+1)-

(10) foe sin® ) cos ) Sy(V) dip — sy 00 = k+1 (Se(0) sin®t1 g — Skaer1(0) + 5¢Sk41(0)) is a 27-
periodic function.

Proof. The properties , , , and @ follow directly using iteratively the integration
by parts method. Alternatively, the first two can be done also integrating by quarters,
see for example [I]. The periodicity properties , , @, and follow easily because
the correction by a multiple of # convert the primitive of a periodic function in a periodic
function. The second part of follows also using iteratively the integration by parts
method. Properties (9H10]) follow by the integration by parts method and properties
7). 0

0, ifl is even,
1, if £ is odd.
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Lemma 2.7. The next properties hold.
(1) f sin® HSk (0)dh = 0.
(2) Jy7 Su(@) dy = £ ‘“k.P”ak
(3) Sk = Sk( ) = Si(—m) = 2750,
A 1 2 (k=11 2
(4) S i= Sielm) = Sia=) = 2(Si(m)? = 2( S5 ) ay.

(5) 7 = foiﬂ sin® 0df = &, £ wsy, = (£1)F 1(kk,}) oy, where o, =
(5) Ck’g(ﬂ') = CkCQ,g<7T) + CzC()’k(W) Co k( ) kf(ZT k+ ¢ odd.
+
(7) Cro(m) = Cro(—7) and Cy(m) = % + SACy0—2(m). Moreover, Cyy(m) = 0 for
k+ ¢ even and Cy(m) # 0 for k + ¢ odd.

m, if k is even,
2, if k is odd.

Proof. Property follows directly using Lemma because 0,0, = 0 for every k.
The other properties follow, as Lemma [2.6] using iteratively, if necessary, the integration
by parts rule. O

3. POLYNOMIAL PERTURBATION

This section is devoted to prove Theorem The proof follows directly from the next
three results. In the first we get the existence of the upper bounds for perturbations of
every order N. The second and the third gives why they are reached for N =1 and N = 2,
respectively.

Proposition 3.1. The maximum number of zeros of the Melnikov function My associated
to family isn and Nn—1 for N =1 and N > 2, respectively.

Proposition 3.2. Consider the system

Xt () = < y+52a23+1x1+1gj+52a23 ), ify >0,

(10)
X7 (@) = (—y,2), ify <0.
The function My(p) is a complete polynomial of degree n with arbitrary coefficients. In
particular, there exist values of ax, k = 1,...,n, such that it has n simple zeros.

Proposition 3.3. Consider the system
Xt y) = (—y—5x"+€22ajxj,x+52bjxj>, if v >0,
§=0 j=2

X~ :(:):’,y’):(—y—(—l)”sx”,x), if v < 0.

The function M, (p) vanishes identically and the function Ms(p) is a complete polynomial
of degree 2n—1. In particular, there exist coefficients a;, 7 =0,...,n and b;, 7 =2,...,n,
such that the function Ms(p) has exactly 2n — 1 simple zeros.

Proof of Proposition[3.1. Following the procedure described in Section [2, we will prove
first how are the expressions, as using polynomials in 7, of the functions Fj, S; and h;,
and second how are the half return maps corresponding to the vector fields of both sides
of the separation line.
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In polar coordinates, x = r cosf and y = rsin 6, system becomes

N
Ia— Zs%rcos@ff(rcos@,rsin@)+rsin99f(rcos@,rsin9)),

=t (11)
r?0 = 1+Zai(rcosegii(rcosﬁ,rsinﬁ) — rsin@fF(rcosf,rsind)).

i=1
This system of equations writes, using differential 1-forms, as

N
= =r@dr —rr'dd = rdr + Z glwF = 0.

i=1
To simplify the notation, we use p,(r) to mean a polynomial of degree n in the variable r.
We do not take into account the dependence in the other variables or parameters. Then,
with this notation, we can write f(rcos®,rsin@) = p,(r), g (rcos@,rsind) = p,(r),
and wi™ = p,(r)dr + rp,(r)db.

From Lemma 2.2, and considering —wi = af (r, 0)dr + i (r, 0)d6, we have

2
FE) =g | Bt =),

S5 (r.0) /ﬁl r)d — FE(r)0 = rpa(r),

hi(r,0) = . <af(r, ) — agi (r, 0)) = Pp_1(7).

Here we observe that, according to Remark [2.4 E the functions F; ki, Sl;t and hf given in
Lemma are not unique and can be chosen in such a way that they are polynomials.
Now we prove by induction in N that the functions F, ki, Sff and hf associated to equation
, of order N, can be written as

FE(r) = rpgn—1y+1(r),
SE,0) = rPrn-1)+1(r), (12)
hiE(r,0) = Prn-1)(T),

for k =1,..., N. If we consider a perturbation of order N 4+ 1 in , then the functions
F ki, S,f and hf for k =1,..., N are, clearly, the same functions than the ones obtained
for a perturbation of order N in . Consequently, we only need to show how they are
for k = N + 1. In this case,

_Q%H = aﬁ“dr + ﬂffﬂdQ = _(wjj\tf+1 + hlin +---t thl)
= (pa(r)dr + rp,(r)d0)(1 + pn_1(r )+p2(n_1)(7“) + -+ PN@m-1) (1))
= PN(n-1)+n(7)dr + 1PN (n—1)4n(7)d0
= P(N+1)(n—1)41(7)dr + 7PN 1) (n—1)41 (1) dO.

So,
+ L[ +
Fyiq(r) Ton By (r¥)dy = rpivinym-1)+1(r),
0

SZ:{:H-I T, ‘9 / 5N+1 1/1) dy — FJ:\|;+1(T)9 = Tp(N—i—l)(n—l)—i—l(T)a

1 05+
hia(r,0) = (&Ji\#l(r? 0) — aﬁ“ (r, 9)) = p(N+1)(n-1) (7).
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Now we can continue proving which are the expressions of the coefficients in € of the
half return map, that is, r,f, fork=1,...,N.
For N = 1, the proof follows using Proposition [2.3] as we have

1 1
r(0, p) = E(Sf:(p, 0) — Fi (p)f) = ;ppn(p) = pu(p).
For N = 2 we write

0
pra (0, p) = —5(ri’ (0, p))*+53 (p, 0)+D1SE (p, 9)7“?(9,P)+F§(P)9+(F1i)'(p)/o ri (Y, p)dy,

with D;SE(p,0) = ZSE(r, 0)] ,- It can be seen easily, from (12)), that r3(0,p) =

87‘ r—=
P2n—1(p).
Next we will prove by induction in N that

pN—Q

We assume that holds for £ = 2,..., N. According to Proposition we have that
pri.1 (0, p) is given as a sum of three terms.
The first one is

pi—2 p(N+1—i)—2 o pN—3 - pN—Q

1 al + + al pm—1(p) p(N+1fi)n71(p) p(N+1)n72<p) p(N+1)n71<p)
D) Zri (0, p)rN 140, p) = = :
=1

=1

. j o
The second term, using the notation D]SF(p,6) = 25, (r,0)| ,1is given by

ord r=p
N N+1—i
Si(p )+ > Dist(p.6) Yo @)™ (0. p)" - (6 )™
i=1 gj=1 my+2mo+---+emy=N+1—i

mit+mo+--+mp=j

Pi(n—1)+2—j (p) X Pmin4+ma(2n—1)+-+my(fn—1) (P)

= PPV m-1+1(p) + s FamatBmy +t (- 2)my

o ppN_Qp(N-l—l)(n—l)-‘rl(p) + pi(n—1)+2—j+n(m1+2m2+~~~+€mg)—(m2+-'~+mg)(p)
o TN72 T(3m3+4m4+---+5m5)72(m3+m4+---+m[)

. p(N+1)n—1(P) n pi(n—1)+2—j+n(N+1—z‘)—(j—m1)(:0)

- pN—2 p(N—i-l—i—ml—2m2)—2(j—m1—m2)

. p(N+1)n—1(P) I p(N+1)n+2+m1—i—2j(p)

- prz pN+1+m172¥2j

PN+ 1)n-1(p) pit2i—mi=3 PN+ D)nt24m;—i—2j(P) o P(N+1)n—1(P)
pN—2 pi+2j—m1—3 pN+1+m1—i—2j o pN—2 ’

The third term has the same expression than above changing S by F' and integrating in
the variable 6, but there are no changes in the degrees as a function of r. So, as the three
terms write in the same form, after division by p we have

+ _ Pw+1n-1(p)
rvn(0:p) = e

Finally, from (13)), the difference 73 (7, p) — ry(—m, p) also writes as pyn_1(p)/p"N 2.

Then, from Proposition the maximum number of positive zeros of My(p) is Nn —
1. [l

Proof of Proposition[3.9. In polar coordinates, x = r cos 6, y = rsin 6, the half return map
of the vector field X~ is the identity. In particular r; (=, p) = 0 and M (p) = r{ (7, p).
For simplify the reading we will omit in this proof the dependence of * because we only
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need to compute the half return map for € (0, 7). Then, in polar coordinates, the vector

field X of writes

no . - ne - .
ro= 5( > a9 cosP 20 4+ 3 agr* cos® fsin 9),
=0 7=0
no . . ne . .
0 = 1+ 6( — > agjy1r¥ cos® T Osind + Y agr? ! cos¥ 9),
j=0 7=0

where n, = [(n — 1)/2] and n. = [n/2]. In terms of differential 1-forms we write

w=1r0dr —rr'dd = rdr + cw;,

where
—wy = ay(r, 0)dr + py(r,0)do,
with
ay(r,0) = Z agj1r T cos¥ T G sin ) — Z agr? cos? 16,
=0 =0

No Ne
Bi(r,0) = E agjar 2 cos¥ T2 6 + g ag,r 1 cos® O sin 6.
j=0 Jj=0

According to Lemmas [2.2 and M, and using fo% cos? ) siny dip = 0, we have that

Mo

1 [ :
Fi(r) :%/ Bi(r,)dy =Y asjaicajar™ ™,
0

Jj=0

0 "o - . .
Si(r,0) = / Bi(r,¥)dip—Fi(r)6 = Za2j+1r2j+262j+2(0)_ 2;2 17’27+1(6082]+1 0—1).
0 j=0 J=0

Clearly Sy is 2m-periodic in 6, because the functions Cyji2(6) also are. From Proposi-
tion 2.3 we have that r{ (6, p) = (Si(p,0) + Fi(p)d)/p and, from Lemma [2.7,

Ne

2&2‘ . O .
i (m,p) = Z Qj—_i_jlpzj + Z agj1Coj2p” T,
=0 =0

with 9549 # 0. Consequently, there exist perturbation values such that M (p) = r (7, p)
has n simple zeros. Because it is a polynomial of degree n = max{2n, + 1,2n.} with
arbitrary coefficients. O

Proof of Proposition|3.5. First of all we consider the unified system

X*: () = (—y+5isx"+622aj[a:j,x~l—52l);:xj,>
=0

j=2

where 67 = —1, a;-“ = aj, b;“ =b;, 6~ =—(=1)", a; =0, and b; =0.
In polar coordinates, x = r cos p, y = rsin @, we get

n n
’_ +,.n n+1 +..7 J ; 2 +..j J+1
r —5<5 r™ cos (p+§ by’ cos’ psing | +e a;r’ cos’™ o,
j=2 7=0
n n
o = 1—€<5ir”’1 cos™ @ sin o — g b/t cos’ ! go) —¢? g a; 17" cos’ psing,
Jj=2

=0

(14)
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First we make a rotation of angle w/2 in order to have the discontinuity line as the
horizontal axis. With the change 6 = ¢ + 7/2, cosp = sinf and sin ¢ = — cos 6, system

becomes

n n
r = 5(6ir” sin" ™ g — E b1’ sin’ 6 cos 6) + €2 E a;r’ sin’*,
=2

J=0

0 = 1+ 5(5*7’”’1 sin™ 6 cos 0 + Z b;-trj_l sin/ ! 9> + &2 Z aj:rj_l sin? 6 cos 6.
=2 =0

or, using differential 1-forms, we have
wt =r0dr — rr'dd = rdr + swi + *wi =0,
where
—wi = af(r,0)dr + Bi(r,0)do,

with

o (r,0) = —0Fr"sin™ @ cos ) — Z bjirj sin’ 1,

=2
B?(Ta 0) = TPt lgintl g — Z b;-trjJrl sin? 6 cos 6.
j=2

The explicit expression of wy will appear later when we study the perturbation using the

second order terms.
For the first order study, according to Lemmas [2.2] and [2.6] we have

+ I + A n+1 + ntl
Fie(r) :g ; B (r,ap)dnp = o /0 sin""" dp = 071" s, 4, (15)
[/ n
SE(r, 0) :/ BE(r,)dy — FE(r)0 = 65" S, 1 (0) — Z bj[j%rjﬂ sin/™ 6. (16)
0 =

Clearly S is 27m-periodic because S, 41(f) also is. From Proposition we have that

- _ (ot — : n _ a
(0, p) = (ST (p, 0)+Fif(p)0)/p. 1t is clear, from Lemma[2.7, that Si(p, 7)— Sy (p, —7) =
(67 = 67)8,1p" ™ and EFiF(p)7m — Fy (p)(—7) = 7p™ (6T + 67 )sny1. We observe that,
when n is even, 6t =0~ and s,,; = 0, and when n is odd, 6* = —0~ and §,,1; = 0. So,
the first Melnikov function is

My(p) = r{ (m,p) —ri (=7, p) = 0.

The next step is the computation of the second Melnikov function Ms(p). In order to
get it, first we compute the function i (r,6) using Lemma [2.2]

+ 1 + 85’li + n-1(_:..n
hi(r,0) = ;(al (r,0) — W(T’ 9)) = —6"r" ! (sin"fcosf + (n+ 1)S,11(0)).

The study of the second order terms, also using the decomposition of Lemma [2.2] uses

—wfhf — in = oz;t(r, 0)dr + 5;(7", 6)do,
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with

By (r,0) Z a7 sind Tt O + <5i mHgin™t g — Z bEri ™ sind 6 cos 0)
j=0 7j=2
X ( 5 1<sin”0(:050+ (n+ 1)8n+1(9))>
- Z a;r/ T sind 0 — (67)%r" (sin®"* O cos O + (n+ 1) sin™ ! 08,11 (6))
=0
+ 5ib;-t7“”+j sin"* 0 cos® 0 + (n + 1) Z 5ib;-tr”+j sin? 0 cos 0S,,41(0).
=2 =2

We have not written the expression of a® because they are not needed for the computation
of r5°(6, p).
Using again Lemma [2.2] and the properties of Lemma and f n*"*1 g cosdh = 0

we have that

/ BE(r Zairj+1sj+ %—Xz(sibjE g

j=2
‘ o1
- Z 5ibj[7“n+j3n+j+2 +(n+1) Z 5ibj[7”n+jj 1 (Snt18j41 = Snjr2)
j=2 j=2
So,
& n—+1
Ff(r) = airj+133+1 + Z 5ibi sl <Sn+j Sptj+2 T ——— ] (Sn418j41 — 8n+j+2)> .
7=0 7=2

Again from Lemmas and [2.6] we have
0
SH,0) = | B (rov)dv — B0
0

- Z a; 7S (0) — (%)™ (m sin”" 2 0 + (n + 1)5n+1,n+1(9))

n Zaibi (1116 = Suvseald))

1
+(n+1) Z §Fb -
=2

Jj+1 (S”Hw) sin? ™10 — S, j10(0) + 3n+13j+1(9)>'

Finally, from Propositions and , the second Melnikov function is Ms(p) =
ry (m,p) — ry (=7, p). We compute this difference term by term. The first and third

terms vanish because (7, p) — 7] (=, p) = 0 and, from and (16),

oS (r, )
or

_ 05 (r,—m) = (R4 1) = 6 )ényr = 0.
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The above expression vanishes using the same argument explained in the paragraph before

(16). From Lemma we have

S0 [ e = 0 s ([ St = sy )

n+1 .. .
+Zj bip™ s g1 (8511 + TSj41)

2 n— n+ 1 n+j—
== n+1 2 ! +Z b n-l-l%—‘:lp L (17)

In the last equality, the first term vanishes because, from the expressions of Lemma [2.6],
Spy1 is a multiple of 4,47 and the integral is a multiple of §,,.1;. Now, doing similar
simplifications, we get

L O) [ o =0+ 0 s ([ Suatwao - s,y )

P 0
(n+1)m° e

SRR N (19
The contribution of the last term, in the expressions of ry, to M; is obtained from the
difference of and . Hence, the first part of the second Melnikov function writes
as

n+1 i

Z TE1 Sn1 7P (19)

j=2
Now, we continue computing the second and fourth terms. Adding the following two
expressions

n n+j5+2. R n+1 R
;S+ p,T Zb i <]-T3n+j+2 — Sntj T F‘Sn—&-lgj—f—l)

+ Z ;850 — (n+1)p"" g0,

1 . n+j+2 n+1
;FJF Zﬂb prit (stnJerrQ — Snij — mSnJrlSjJrl)
+ Zﬂ—ajpjsj+1u
=0

we obtain that the contribution of that terms, corresponding to the vector field X, is

u . = i (n+j+2 n+1
§ :CL' L+ § b. n+j—1 ( ' + At : Sn, + )
g Jp]’}/]-‘rl . 3P j +1 7n+j+2 rYn—&—] j +1 +1/7]+1 (20)

- (n + 1)/) " 5n+1 n+1-

The contribution corresponding to the vector field X~ is the sum of the following two
terms:

1 .

582 (=) = (0 + 1" i,
1 -

—Fy (p)(—=m) =0,
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that is, after adding them, only
—(n+ 1)02n_1§n+1,n+1- (21)

Consequently the difference of equations and provides the second part of the
second Melnikov function:

n n .
: meil (M7 +2 n+1
Zajﬁ?%trl + Zb]’p i (T’Y:;rjw - ’Y:;rj - ?3n+17f+1> . (22)
=0 j=2 J J
Finally, adding and and using that 0,442 = 0,4, and
jT”Yn+j R m%ﬂ»
we obtain the expression for the second Melnikov function

n n

. n i
Malp) = 3 apifud + 32— gbiitisr ™,
=2

J=0

with 7,7 # 0, for every k, see also Lemma [2.7]
The proof finishes because Ms is a complete polynomial of degree 2n — 1 with arbitrary
coefficients. So, we can choose them such that My(p) has exactly 2n — 1 simple roots. O

4. PERTURBATIONS OF ORDER ONE AND TWO FOR SOME LIENARD FAMILIES

This section is devoted to prove Theorem [[.2] It is a direct consequence of the next
two results.

Proposition 4.1. Consider the piecewise Liénard system
(x',y') = <_y + 5fr:zt(x)v J}) ’ (23)
defined in ¥ = {(z,y) € R% +y > 0}, where fr(z) = 3. a;-txj. The first Melnikov
7=0

function writes as My ,(p) = ppm(p?) for a given polynomial p,, of degree m = [(n—1)/2].
Then it has at most m positive zeros. Moreover, there exist values of the parameters aj[
such that M, ,, has exactly m positive simple zeros. Additionally, M, = 0 if and only if
agp | =—ag, 4 fork=1,...,m+1.

Proposition 4.2. Consider the piecewise Liénard system
(') = (—y + eff(x) + Sng(x),x) , (24)
defined in S5 = {(z,y) € R? £y > 0}, where ff(z) = > a;2? and gF(z) = Y bia’,
=0 =0

satisfying a3, _, = —ay,_, for k =1,...,m+ 1, where m = [(n — 1)/2]. Then the first
Melnikov function vanishes identically, M, ,, = 0, and the second Melnikov function writes
as Man(p) = ppm(p?) + qun_1(p?) for given polynomials p,, and q,—1 of degrees m =
[(n—1)/2] and n — 1, respectively. Then it has at most m + n positive zeros. Moreover,
there exist values of the parameters af and bj[ such that My, has exactly m + n positive
simple zeros.

Proof of Proposition[{.1 We start writing system in polar coordinates

dH +ewf, =0 if 6 €[0,7),
dH +ewy,, =0 if 0 € [r,27),
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where H = r%/2 and —wfn = afn(r, 0)dr + Bfn(r, 0)df, with

afn(r, 0) :fni(r cosf)sinf = Z a;-:rj cos’ fsin 6,

= (25)
Bin(r,0) =f (rcos)rcosf = Z a;r’ ™ cos’ 6.
=0
Using Lemma [2.2] and Proposition [2.3] from the above expressions, we get
where
R = 5 [ 850,000
r)=— r
1n o 0 I,n\">»
and

0
S (r,6) = / BE (r,d)dip — F2,(r)f.

Now, we prove that the functions F7,,(r) and ST, (r,6) are polynomials in 7 with con-
stant coefficients and trigonometric functions, respectively.
For n = 0, we have afo = aZ sinf and Bfo = bErcosf. Hence, using Proposition ,
M o(p) = 0, because Fo(r) = 0 and Sy o(r, ) = agrsiné.
For any n, we can write
(5]
Flj,:n—&-l(r) = Z Qg Con™™" + a7jf+1cn+27“n+2 = Fl:tn(r) + a7jz:+1cn+27“n+2a (27)
k=1
because, from Lemma [2.6, we have ¢; = 0 for every j odd. We remark that the monomial
in 7"*2 only appears when n is even. Additionally, we can write

n+1

0
SljjnJrl(?a? 9) = Z ajierrl / COSj+1 wdw - Fl,n+1 (7")6
=0 0
= Z aj[r”l / cos T pdp — Fy ()0
=0 0

0
+ (afﬂr”H/ cos" 2 dyp — afﬂcn“r”“@)
0
S

)
fn<r7 6) + a,jfﬂ (/ cos"t? iy — Cn+29> 2
0

and, consequently,

Sfan(T, 0) = an(r, 0) + affﬂ Crpa(0) 72 (28)
The above expression can also be written as
Sin(r,8) =rsing G,(r,cosb), (29)

where G,(r, cosf) is a polynomial of degree n in r which coefficients are polynomials in
cos 6. This property follows by induction on n using also Lemma .
Straightforward computations show, from ([26)), , and , that

prrli,n+1 (07 p) = prli,n(eu p) + a‘i+1 (Cn+2<9) + Cn+26)pn+27 (30)
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with rfo (0) = aF sinf, and, consequently,
rin(0,0) = Y a5 (Cira(0) + )
=0

Therefore, using also Proposition [2.5, we can write the first Melnikov function as

Ml,n+1 (p) = Tin—i—l(ﬂ-? p) - Tl_,n—o—l(_ﬂ-? p)

= Mi,(p) + m(a},, + a;H)anrgp"“.

Then, using Lemma [2.6] the function My, is a polynomial in p of degree 2m + 1, with
m = [(n—1)/2], because M;(p) = 0, ¢; = 0 for j odd, and ¢; # 0 for j even. More
concretely, it writes as M ,,(p) = ppm(p?) with

pm(p) =7 (ca(af +ay) + calad +az)p+ -+ + cams2(ady + a5mi1)p™) (31)

where cop 0 for k=1,...,m+ 1.

Clearly, from the above expression, all the statements follow. The function M, has
at most m zeros and we can choose all the perturbation parameters in order to get these
zeros as simple ones. Moreover, M, = 0 if and only if

aj,_ | =—ay , for k=1,....m+1

0

Proof of Proposition[4.3. First, we provide a short description of the proof, with the main
properties. Then, we proceed to detail all the steps carefully.

From Proposition we know that the first Melnikov function vanish identically when
ag. 1 + a5, ; = 0. In the proof we will refer this property as (M;). The second Melnikov
function writes as a sum of two functions,

Mon(p) = MY (p) + M2 (p),

that they correspond to the perturbation parameters of first and second order, a; and
b;, respectively in (24]). We can also use Proposition , changing ¢ to €2, to see that

MQ(QTE (p) = ppm(p?) for some polynomial p,,, of degree m = [(n — 1)/2], with arbitrary
coefficients depending linearly on b;. Hence, we fix our attention to study MQ(Q (p). We will
prove by induction that M2(1,2(,0) = ¢,_1(p?) for some polynomial g, 1, of degree n—1, with
coefficients depending quadratically on a;. This proves the first statements. That is, the
polynomial Mz ,,(p) = ppm(p?) +¢n-1(p*) has m+n+1 monomials and, consequently from
the Descartes signs’ rule, the maximum number of positive zeros is m + n. The existence
of such number of simple positive zeros is proved without the explicit computation of
all their coefficients. Only the maximal degree term is necessary to be given. Because,
at each step of the induction procedure, we add a complete polynomial in p? that has a
new monomial of higher degree and it is independent with respect to the smaller degree
monomials. Therefore, the last statement follows. In fact, the coefficient of maximal
degree, e, o, takes different expressions depending on the parity of the degree of the
perturbation. More concretely,

(0t - -
oy — a,; (anJrl + %H)Kn, when n is even,
n—2zi = + + _ .
Ay iy (an + an)Kn, when 7 is odd,
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with positive constants K, satisfying the recursive relation
—1 4
- n—Kn—Q - 5
n+1 (A4n—12—-1)(n+1)
and K; =2, Ky = 2/9. The positiveness follows by induction proving that K, > 1/(n +

1)2 > 0. We remark that the recurrence that defines K,, does not change with the parity
of n, but the initial values does.

We start writing system in polar coordinates

dH + ewf, +c*wi, =0 if 6 € [0,7),
dH + ewr,, + e*w;,, =0 if § € [r,27),

(32)

n

where H = 1?/2, —wyi,, is defined in (25)), and —w3,, = a3, (r,0)dr + B3, (r,0)d6, with

1n

i, (r,0) = fE(rcos)sing =Y bFrd cos’ Osind,
=0
Bin(r,0) = fr(rcos)rcosd = Z bR cosi 1 6,

=0
The second Melnikov function, from Proposition [2.5] is given by
My (p) = 13,(7, p) = 13 (=T, p)- (33)
Furthermore, from Proposition [2.3] we get

1
Pron(0:0) = =571a(0: )" + 2 0) + Di(S1,) (0, 0)ria (6 p)

0
LB (0)0 + (FE) (o) / vE (1, ),

aSE r,0
and D (S,)(p.0) = 2552
r=p

, , and , respectively, and the functions F2in and Szi’n are obtained applying

Lemma 2.2 to the one-form

. Here the functions Ff ., St

Lns 1, and ri, are defined in

From the hypothesis (M) and the proof of Proposition {t.1|we have r{, (7, p) = ri_, (=, p).
Moreover, from , an(r, +7) = 0. Hence, equation (33)) writes as
1 ™ B —T B
Maalp) = +(((F00) [ ot = (FLY ) [ riatv. i)

F(Ff(0) + By + (Sta(0.7) — Syl —w>>) .

From it is clear that each Fj, (p) and S5, (p) can be written as the sum of two terms,

the ones that depend linearly on the coefficients of the second order (computed from

inn) and the ones that depend quadratically on the coefficients of the first order (com-

puted from A7, wi,). We denote them by F;iﬁ)l(p), S;;L(i)l(p), F2:tn(—&1-)1 (p), and S;f;f}r)l(p),
respectively. With this notation (35 writes as

Mo (p) = M) (p) + MM (p),

with
M2 (p) = (F22 (o) + Fo 2 (0)m + (552 (p, m) — 55,82 (p, =) (36)
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and

M) = ((#26) [ it ias = ELY0) [ i) .

(F D (0) + F P (p)m + (S50 (p, 1) — 55, (p, —7r>>> .

Also from Proposition , writes as MZ(QTE (p) = ppm(p?) where p,, is the polynomial

changing a; by b;. We recall that its degree is m = [(n — 1)/2]. So, we continue the
proof showing that writes as M. (1)(/)) = ¢u_1(p?), for some polynomial ¢, ; of degree

2,n
n — 1. As in the proof of Proposition , we will prove, by induction in n, that MQ(Q (p)
function writes as

1 1
My () = Myl(p) + Pa(?), (38)
where the polynomial P,(p) has degree n. The prove will be done considering the three
summands of equation separately in the following parts (I), (II), and (III).
(I) The contribution of the first term to MQ(IYB 41 follows from the evaluation of the func-

tion (Fi,,11)'(p) 09 T 1 (¥, p)dip at 0 = +m. Moreover, we will see that these expressions
only provides even terms in p for the polynomial P, (p).

From equations and we get
0 0
(FE ) () / rE (6 o) = (FE ) (p) / (4 (0, )y (Cora (1) + oo™ ) i
0
— (FE)(p) / v (1, )+ UE(6) UL (6) + U (0),
o)

where Fi' (r) = > a3;_jco;r% and
i=1

0
U (6) =(FE) (o) / G (Coss (W) + nsatd)™ d,
0
UE(0) =0, cara(n +2) / rE (0, p)diop™,

0
U3 (0) =apsyCnra(n +2) / a1 (Coya(V) + Cpyath) p™ P2 dep.
0

Now, we will compute the evaluation of Ui (0), U (6), and Ui (6) at 6 = 47 separately.
First, from Lemma [2.6] we have

X

2
Cn+2 o -+ 2j+n
5 9) J§—1 2jag;_1C2;p™

Uli(e) = aiﬁ-l (Co,n+2(9) +

and, due to hypothesis (M;) and Co42(7m) = Copy2(—7),
(23]

Cnt2 — . itn—
= <C0,n+2(7r) + 2+ 7T2> (a:-s-l +an+1) Z 2ja;j—102j92j+ Lo (39)

=1

Uy (m) = Uy (=)
p

This last expression is non identically zero when n+ 1 is even also due to hypothesis (M)
and it has only monomials of even degree. This is because, in this case, ¢, 12 = 0. So, we
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write the right hand side of as

(23]

2

—_ 1 i+n
(a:’z_—&—l + an+1) Z 773(‘ )a;_jJrlpzj—i_ , (40)
§=0

for some real constants 775»1), and moreover the term of higher degree in p is

(n+ )enr1ary (apsr + agiq) Conra(m)p™". (41)
We remark that, in the above expression, ¢,11Copn12(m) # 0.

Second, from Lemma and , we have

n

cj ,
Uzi(e) = aqfﬂcmz(n +2) Z aji (CO,j+1(9) + ]THQQ) Pt
3=0

So, as ¢uy2(a)q + apq) =0 and coj4q = 0, for all j and n, we get

) [n/2)
Uf(m) = U, (=7 Yy - A
2 (1) = Uy (=) =Coia(n+2) Y (af,03; — a,,a5;) (CO,2j+1(7T) + 2]+1772>p2]+n

p pa 2
/2 o
+ Cnra(n+2)(a) + ap ) Z aziy (CO,2j+2<7T) + ]T+7T2>p2]+1+n
=0
[n/2] .
—cya(n+2) Y (a), 108 — any1055)Co2j41 () p™
=0

(42)
We have used Lemmas and and (M;). The expression is non identically
zero only when n is even. Consequently, the last expression in writes as

[n/2]
2 — j+n
a:+1 Z 77](‘ )(a’;j + azj)P2j+ . (43)
§=0
for some real constants 17](2). Clearly it has only monomials of even degree and the term
of higher degree in p is
(1 + 2) 202 (@ + a5)Consa ()" (44)
We also remark that, in the above expression, ¢, 2Con+1(m) # 0.

Third, using also Lemma , we have

2

0
UF(0) = (a0 eura(n +2) (Consal0) + casay ) o

and, consequently,

SO D 1t 916 Comea(m) + i) (0 0 ?) 777 = 0. 09

Because, when n is even, by hypothesis (M), ;' +a,,, = 0 and when n is odd ¢,42 = 0.

2

(IT) The contribution of the second term to Mz(l,z 41 in follows from the computation

of FQjE n(i)l (p). In fact we will prove that both functions vanish identically.

From the second summand of we have

1 2w
) =5 [ iuia(0.0)8000(0,0)00. (16)
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Straightforward computations show, from the definition of h;, see Lemma [2.2] and equa-
tions and (28), that hfo(r, 0) =0 and

hli,nﬂ(?"a 0) = hli,n(Ta 0) — afﬂ(” +1)Cp(0)r".

In particular, by induction,

n

hli,n+1(7’7 0) = — a;'tﬂ(j +1)C;(0)r7.
=0

Finally, also from Lemma and equation , it follows that is zero.

I11) The contribution of the third term to MY in 35)) follows from the evaluation
2. n+1

of the functions S;f 7}(-121 (p,0) at 8 = £7. Moreover, we will see that these expressions only
provide even terms in p for the polynomial P,(p).

From the second summand of and the fact that in (i)l(p) = 0, we have

n

0
S;;z(i)l(pa 9) :/0 hit,n—&-l(pa w)ﬁfn—&-l(pa ?/J)d"éff
0
= /0 (hi (0, 0) =y (n + 1)Co (1) ™) (Bin (ps ) a1 p7F2 cOs™ 2 h)di
= S5 (p, ) + VE(O) + V5E(0) + ViE(9),
where

0
ViE(8) = —a,,(n + 1)p" /O BE (9 ) o),
0
ViE(B) = at, / cos™2 Pt (p, )i,
0

[}
ViE(0) = —(af 1) (n + 1)p* "2 / cos" 2 YC,, (1) drp.
0

Now we will compute the evaluation of Vi(6), V;£(6), and V;*(0) at 6§ = £ separately.
First, from Lemma and the definition of chn in , we have that

VE©G) = —afﬂ(n +1) Z aj,icj+17n(6)pn+j+1.

=0
So, from Lemma

Vit (m) = Vi (~ - ‘
LW ()3 (e — e )@ (47

p =

The above polynomial has only monomials of even degree because, when n+ j+1 is even,
the corresponding Cjy1,,(m) = 0, see also Lemma [2.7)(7). Moreover, the term of higher
degree writes as

(n+ 1) (@410, — @108 )Coprn(m)p™" (48)
and the right hand side of writes as or , changing the coefficients 77](1) and
77](-2), when n is odd or even, respectively. The maximal degree term is different from zero

because Cp11.,(m) # 0.
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Second, from Lemma , we have that

0 n—1
V3E(0) = ay " /0 cos" (— Y @i+ DG W) ) dip
j=0

n—1

= a1 Y 45 (J + 1)Chia(0)p" 2.

=0
So, again from Lemma 2.7, we have that

Vy(m) = Vy (=7) _ =

p =3 15— af @) G+ DCpay (M) (49)
§=0

The above polynomial has only monomials of even degree because when n + 7 4 2 is even
the corresponding C,49;(m) = 0, see also Lemma . Moreover, the term of higher
degree writes as

n(ar_wla; - a:+1a:)cn+2,n—1(7r)p2n (50)
and, as before, the right hand side of writes as or , changing the coefficients

n](.l) and n](?), when n is odd or even, respectively. Here, also the maximal degree term is

different from zero because Cp42,—1(7) # 0.
Third, from Lemma , we have that

0
ViH(0) = —(ay1)*(n 4 1)p*"*? /0 cos" 2 YC, (V) d = —(ary1)*(n + 1)p*"?Crian(6).

So, using that C,49,(7m) = Cppon(—7) =0,

Vs (m) = Vg (=7)
p

~0. (51)

From all the computations done above we have proved, by induction, that writes as

MQ(Q (p) = qn_1(p?) for some polynomial ¢,_; of degree n — 1. This is due to the fact that

the polynomial P,(p?), in (3§)), follows adding the polynomials (39), (42), (45), @7), (49),
and , all of them having only monomials of even degree. More concretely, it writes
in the form or when n is odd or even, respectively. Moreover, the coefficient of
maximal degree term, p*", is obtained adding , , , and . In what follows
we compute it explicitly because it is necessary to conclude the proof, showing also that it
does not vanish. We remark that in both expressions, P,(p?) and p?", the n refers to the
perturbation of degree n + 1, because of the induction procedure. Next, we will write, to
simplify the computations, the coefficient of maximal degree corresponding to M ,,41(p)

or Mél,z +1(p), because they coincide.

When n is odd, we have that the coefficient of maximal degree is a, (a:{ L1 ta, +1) K,
with
Kn = (n + 1)Cn+ICO,n+2(7T) — (n -+ 1)Cn+1,n(7r) — nCn+2,n_1(7r).
This last expression can be simplified using properties @ and of Lemma . First,
in the second and third summands, writing it as

~ 4(n+1) n
"T@n+)(n+2) n+ 5Cntn(m),
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and then, in the second summand of the above expression, to write a recurrent expression
for the coefficient of maximal degree,

_ no o~ 4
Kn = Koz = (4n2—1)(n+2) (52)

The first value follows by direct computation and we obtain K =2 /9. All the coefficients
are positive because we can prove, by induction, that K,, > 1/(n + 2)* > 0. When n is

even, the coefficient of maximal degree writes now as a,,; (a} + a;,) K,, with

Kp = (n+2)¢n49C0ms1(7) — (0 + 1)Cr1n(m) — nCpiop1 ().

Using similarly Lemma as previously we have the same recurrence relation . But
starting at Ky = 2. Clearly, K, is also positive because the same lower bound apply.

We remark that the expression for follows from because I?n,l = K,,. Conse-
quently, K, > 1/(n+1)? > 0.

The last statement of the theorem follows writing the second Melnikov function Ms ,,(p)
as ppm(p?) + gn-1(p?), for ay, = 0 when k =0,...,[n/2] and by, ., = 0 when k =0,...m.
As we have mentioned before, the polynomial p,,(p) writes as changing aj, ., to by, .,
and a,, ., to 0. The polynomial g,_;(p) is obtained by induction, using alternatively
and . So, we have

m

n—1
Man(p) = 3 G+ (0 gyaral)s, (53)
=0

k=0 itj=20+1
1,j<n

where (j, # 0 and & p+1 = Ky # 0, due to (31) and (32)), respectively. This last expression,
expanding the sums, writes

M, .. (p) =Koagai + Gobi p + (§osag a3 + Kiafaz)p® + Gibg p°

+ (&)5@3@3 + 514@?@1 + Kg(l;_a;)p4 4o

It remains to prove the existence of parameters af and b such that has ex-
actly m + n simple zeros. They appear bifurcating from infinity according to the fol-
lowing procedure. We start choosing all the parameters equals to zero except aj =
aj = 1 and we continue adding the rest of parameters one by one, with a specific order,
bl ay,bs,af,...,bh al al ... al_1,ab, and alternating signs. That is adding only
one monomial of higher degree in each step. The first simple zero is obtained taking any
b < 0. The second appears, from infinity, choosing a5 > 0 small enough, because at
this step a3 = 0. The third bifurcates also from infinity adding b3 < 0 small enough. At
the fourth step, adding a4 > 0 also small enough, the previous zeros remain, by conti-
nuity, close to the ones appeared in the previous step. Although the coefficient of p? has

changed. The proof ends when all the coefficients of has been added. 0

From the last proof, it is clear that M,,, see , has exactly m + n positive simple
zeros and no more. Moreover, only K, and (; should be different from zero. The next
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example shows the explicit expression for My when n = 6,

1774 702 578
Mao(p) =5 155503 45 " + ( ~ 1o 0% + %aia;>p8
1426 2% 58 5
( s aiag + ﬁa;a;’ + %aga;f)pfi + Eb;;ﬁ
74 14 3T .
+ (2050t — —ataf + afaf )’ + b7/

2
+ (2@3@5{ + §afa;’>p2 + gbfp + 2aiag .

Then, it seems numerically that the eight positive simple zeros that the above polynomial
can have, can be located arbitrarily in the positive real line. For example, if we fix the
values aj = 1,a] = 1,a5 = 0.02154486, a7 = 2.6966906,a; = —0.1355754 - 1073, ad =
0.3935304, af = 0.4103265 - 1075, b = —3.351348,b1 = —2.4176393,b5 = —0.1400563,
then Mg has only 8 real zeros at p=1,2,3,...,7,8.

Alternatively, choosing a ; = af = 1, the zeros can be obtained bifurcating from the
origin reordering in an adequate way the perturbation parameters.

5. PERTURBATIONS OF ANY ORDER FOR SOME CLASSIC LIENARD FAMILIES

In the previous section we have seen that the study of the second Melnikov function
for classical Liénard equations with a horizontal discontinuity line is more difficult than
the first order study. A higher order analysis for perturbations of degree n can only be
done adding some extra hypotheses or changing the slope of the discontinuity line. This
is what we do in Theorems |1.3| and In the first result we assume some symmetries on
the perturbations and in the second we change the discontinuity line to the vertical axis.
Their proofs follow directly from the next two propositions.

Proposition 5.1. (a) When f are even polynomials, system (3)) has a center at the
origin for every €. Moreover, all the Melnikov functions vanish.

(b) When [ are odd polynomials, the Melnikov function of order N, My, associated to
system has at most (n — 1)/2 zeros. Moreover, there exist polynomials fii such
that the zeros are realized as simple ones.

Now we consider system . Under the change of coordinates {x = y, y = =z} it
becomes

(wﬂd)—'ﬁh—m%—éisﬁ?@0>, (54)

where f are polynomials of degree n defined now in ©F = {(z,y) € R? : 4y > 0}.
Observe that, for this new system, the discontinuity set is the z-axis.

Proposition 5.2. All the Melnikov functions associated to system have at most n
zeros. Moreover, there exist polynomials fijE such that all the zeros are realized as simple
ones.

Remark 5.3. In the above results every Melnikov function has exactly the same form. In
fact all the higher order studies coincide with the first one. It means that the Melnikov
function stabilizes in the first step. Like in the Liénard continuous case, see [14].

Proof of Proposition[5.1 (a) Each system defined by , assuming the even property in
f*, is symmetric with respect the y axis. In fact it is invariant via the change of variables
(z,y,t) = (—z,y, —t). Hence, the system is globally invariant with respect to this change
of variables and, consequently, the respective half-return maps are the identity ones for
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every ¢ : IIT(p) = II"(p) = —p. Then the Melnikov functions vanish identically for each
order and the proof finishes. R
(b) First, system (3]), assuming the odd symmetry in f* and writing f*(z) = x f;"(2?) =

n
+ 2\
T Y ay; . ,(2°)) where agjy1; € R, can be expressed as
Jj=0

N
dH + ) ewf =0, if6€0,7),
i=1

N (55)
dH + ) " cw; =0, if6 € [r,2m),
i=1
where —w;F = of (r, 0)dr + 5 (r, ) with
o (r,0) = Z ag'EjHJTQjH cos® ™ fsing and BE(r,0) = Z agtjﬂ,ir%“ cos¥t20. (56)
=0 =0

In order to find the Melnikov functions of order i, M;, we will write (6, ¢, p), the

solution of , as

N

r=(0,e,p) = > ' (0,p).

=0
Consequently, M;(p) = ri(m, p) —r; (=7, p).
The first Melnikov function is given by M; = r} (7w) — 7, (—7) where, from Proposi-
tion 2.3} the functions ri(0) := r-(6, p) satisfy
pri(0) = Fi(p)0 + St (p,0), (57)
and Ff, Si are obtained from the one-forms —QF where hZ = 1 and

—Qf = —withs = a5 (r,0)dr + B (r,0)do.

With this notation, functions Fi* and Si are given by the expressions
1 2w 0
Fl:t(r) 9 6?:(717 e)de and Si‘:(T, 6) - / 6%:(717 TP)CW - Fli(r)e
0

:27'('0

So we get

n

Fif(r) = Z%ij+1,102j+27”2j+2 and  Si(r,0) = Z a2ij+1,1c2j+2(9)7’2j+2- (58)
j=0

Jj=0

where, c42 and Cyjyo are given in Lemma and the function Cyj;2 has the form
sin @pyj41(cosf) with peji1 a polynomial of degree 25 + 1 in cosé. Moreover,

hi(r,0) = % (ali(r, ) — (9518—(:,0)) . (59)

Observe that, from equations and , we have
SE(r,—0) = =S (r,0) and 1 (—0) = —ri(6).
And, from the fact that S; (p,7) =0 = S| (p, —7), it follows from equation that

_EH W@+ () S =S(e-m) _ EB(p)+ ()

My(p) = ri (m)—=ry (=) p p p
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Suppose that the first Melnikov function vanishes identically, that is, M;(p) = 0. Then
Fi(p) = —Fy (p) and from (58) we obtain ag;,,, = —aj;,,,, j = 1,...,n. In particular,

from equations , , and we get

ay (r,0) = —ai (r,0), By (r.0) =—B{(r.0),
Si(r,0) == 50 (r,0), i (6)=—r(6).

Also as of and Si are odd functions with respect to the variable 6, it follows that
hi (r,—0) = =hi (r,0).
From the equalities above and the expressions and we can write

Ff (0) + F (p) =0, Si(p.6) - S; (p,—0) =
W (p.0) = by (p.—6) = 0, af(p.6) — af (p, —6) = (60)
B (0,0) + Br (p,—0) =0, 1 () —ry (=0) =

Now taking the e2-terms in the series expansion of equation of Proposition we get

+ __1 + 2 ’ + + + +
pr0) == 3 FO) 4 0. ([ Felpertav st et 010)
+F5(p)0 + S5 (p. 0),

where O, (-) denotes the order € terms of (-).
The second Melnikov function is given by My = r3 (7) — r; (—7) and, from conditions

, we have
—0 2] 0
/0 Fr(p + ery ()i = / Fy (p+ ery (—))dip = — / Fr (ot ert (4))do

- /0 Ff (o + eri (1)) dy.

Also, Sy (p+ery (—0),—0) = =Sy (p+ery (=0),0) = =Sy (p + ery (0),0) that implies
Si(p+er((0),0) = Sy (p+ery (=0),=0) = S (p+er{ (6),0) + Sy (p+ery (0),0) = 0.
Next, from (61)), we write

Fy (p) + 15 (p), N Sy (p,0) = Sy (p, =)

ry (0) —ry (=0) = ; P

(62)
where the functions F;°, S5 and h are obtained in a similar way as the case i = 1 but
now using the one-forms

—QF = —wi — hiwi =65 (r,0)dr + B3 (r,0)ds,

with
az (r,0) + oy (r,0),

35 (r,0) = B3 (r,0) + hE(r,0) 55 (r,0) = B3 (r,0) + 5,7 (1,6).

[N
N H
—~
=
D
SN—
I
o
N H-
~—~
=
D
SN—
= H
—~
=
>
o
—
—~
=
e
SN—
I

(63)

So, we have

Fi(p) = FP(p) + F;"(p), and S5 (p,0) = S5 (p,0) + 55V (p,0),



HIGHER ORDER PERTURBATIONS IN PIECEWISE SYSTEMS 27

where F; ’(2), S;E 3 depend on the coefficients of order €? of the one-forms and are
given by

1 2 n .
+,
F 2 (7’) :% ; ﬂ;:(’r’, Q)d@ = ZO a§5+17262j+2r2j+17

0 - . (64)
S (r,0) :/0 B (r)dw — B2 ()0 = 3 gy 1Cojaa(0)r%42,

J=0

where Cyj19 is given in equation (58). The functions F2jE ’(1), S;E () depend on the coeffi-
cients of order ¢ of the one-forms (55)) and are given by

i (1) + (1
27r / &

)(r,0) / BV (r, p)dy — D ()6,
Moreover, from the fact that §; ! (r, 0) =05y () (r,0), these functions satisfy
FO0) = =BV, and S50, 0) = -8,V (r,0). (65)
Now it follows from equations and that
-6
S50 (r,0) - = [ s~ [ 50w
0

= /0 9 (62*’(”(73 0) + 8y O, ) ) dv = /0 9 (850 () + by (. =087 (r,—0) ) dp
= /O 9 (8D, w) = b ()8 () ) i = /0 9 (850 0) - B0, 0)) =0,

So we obtain from equation the difference

s (60) — o (—g) = B OB (0 S(p.0) = 83 (p.0)
2 2 -
p p
_ BP0+ B0, 855 0.0) - 5 (0, —0)
p p

and, from the fact that S;’(Q) (p,m) =0 = S;’(z) (p, —m), we get the expression for the
second Melnikov function

_ F 20+ F %) 55 (p,m) = S5 (p, 7
My(p) = i (7) — 1y () = 2O T 7o) 5 T em) = 5 T e 7
+(2) " -2 ’ (66)
_ Fy7 7 (p) + By (P)W
p

Now suppose that it vanishes identically, that is, Ms(p) = 0. Then from equation (66| we
have F,"%(p) = —F;"®(p) and from equations the next relation holds:

- _ 7t P
Aojy1,2 = —A2511,2; J=1...,n

From equation (64)) it follows that S;“(z) (p,0) = —S;’(Q)(p, 0). Also, using equation ((65)),
we obtain

Fy(p) = Fy P (p) + FW(p) = —(F P (p) + FP(p)) = —F5 (p),
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and similarly S (p,0) = —S5 (p,6). This implies that

S5 (p,0) = Sy (p, —0) = S5 (p.0) + S5 (p,0) = 0.
Now, from the form of 43 and Bzi given in 7 we have

3 (r,0) + hf (r,0)af (r,0) = (a5 (r, =) + hy (r, =0)ay (r, —0))
5, 0) + b (r,0)af (r,0) — (a3 (r,0) + hy (r,0)a; (r,0)) = 0.

a; (6) — 65 (—0)

(0%
«

or
hy (r,0) — hy (r, —60) = 0. Using all the above relations together we can write

Fy(p) + Fy (p) =0, S5 (p,0) =S5 (p,—0) =0,
h;(p,e)—hf(p, 9):07 a;(pae)
B3 (p,0) + B85 (p, —0) =0

Now suppose that for j =1,...,m — 1 we have

)
. . . A+ S + 1 ~+ 85’5':
Similarly we obtain (5 (0) + 5 (—6) = 0 and, as hy (r,0) = — | &5 (r,0) — , we get
r

Ff(p)+ F; (p) =0, S;(p,0)—S;(p,—0)=0,
hi(p,0) —hi(p,—0) =0, af(p,0) —a;j(p,—0) =0, (67)
B (p,0) + B; (p,—0) = 0, ri(0) —r; (=6) =0

Then the terms of order €™ of equation in Proposition can be written as

Prm(0) =Fii(p)0 + S5 (p, 0) + Ocn (—% (pteri (@) +---+ e’"‘lri_l(@))Q)
m—1 0
+ O (Zsi / Fr(p+erf(@) -+ () dzﬁ)
i=1 0

m—1
+ Oun (Z SF(p+erf(@) +--+ s’”‘lri_l(@))) :
=1

Now observe that as in the case i = 2 under the hypothesis of induction (67)) we have

Fn(p) + Fu(p) y o Sl 0) = S(p,0) (68)

p p

T (0) = 1 (=0) =

where the functions FZ, S= and h are obtained from the one-forms
m—1
= Zwihi = i = Do Wl = A 0)dr + B (r, 0)d0,
=1

with
&k (r,0) = ok (r,0) + th 05 £(r,0) = at(r,0) + Ozi’(m_l)(r, 0),
o (69)
BE(r,0) = B (r,0) +Zh BE(r,0) = Bi(r,0) + B,V (r,6).
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Furthermore, it follows that

3

a0 (r,60) — ag Y

! (7", 0) — hy,_(r, =0)a; (r, —9))

HM

(hJr (r, 9) (r,0) —ht_ (r 9) (r, 9)) 0.

1

<.
I

Similarly, we obtain the vanishing relation 6;2’("1_1)( 0)+ Bm’ (m= 1)(7’, —0) = 0. Moreover,
we can write

Fr(r) = ExM™ () + Fp™ (), and S5(r,0) = S50 (r,0) + S50 D(r,0),

with Fn?(m), Gitotm) depending on the coefficients of order €™ of the one-forms and
they are given by

m 1 [ - .
Eﬁ%ﬂz—ﬁﬁ PR 008 = 3 g™
) (70)

(r,0) / BE(r,)dy — FE0(r)0 =) a3y Cojaa(0)r™ 2
j=0

Here the functions Fiy ’(mfl) Sim=1) depend on the coefficients of order £/ of the one-form

(B3], for every j =1,.. — 1, and from the fact that Bk ™V (r,0) = =8,V (r,0)
these functions satisfy

Fpm () = =F " (), and  Sp0"D(r,0) = =S,

m m

(m=1) (1 ). (71)
Now as

S:I:(m 1) ’I“ 0 / ﬁﬂ:(m 1) Q/J)d’l/i F:t(m 1)( )0’

we get, also using the symmetry of the functions 5,
S(r,0) — 5D (r, 0 /5*"” v)dv - / B ()

- / (BETD (1) — B2 (1, 9)) dip = 0.

0
Then, from equation , we have

Er(p)+E.(p),  St(p,0) =S, (p,—0)

P
_ )+ Fn™ )y S (0,0) = Su ™ (p, ~0)
P p

and, from the fact that Sp™ (p, 7) = 0 = S"™ (p, —7), we obtain
Fn™ o)+ Fu™(p) S ™ p,m) = S ™ (p, =)

ra(6) = rn(6) =

m

0+

M, =ri(m)—r (-7 =

m

p p
_ B )+ F™ )
; :
This implies that, when M,,(p) = 0, we have

— . _l’_ .
Agj1m = —Qgji1my fOr J=1,...,m.



30 C. BUZZI, M. LIMA, AND J. TORREGROSA

From equation it follows that S ™ (p,0) = — Gy (p,6). Also, from equation (71]),

we obtain
Ex(p) = F ™ (p) + F D (p) = = (£, (p) + "D (p) = = F (),
and similarly S (p,0) = =S, (p,0). This implies the next vanishing relation:
S (p,0) = S (p, =0) = S;.(p,0) + S, (p, 0) = 0.
Consequently, from equation , the next difference also vanishes:

rt(0) —r, (—6) = 0.

m

Moreover, from the form of 4 and Bi given by , we have

m—1 -1

&t (0) — ao(—0) = ai(r, 0) +Z nF(r,6)at (r,6) — ( ~(r,—0)+

3

(]

h; (r, ~0)a; (r,—0))

1

ht(r,6)at (r, 9)) ~0.

<.
Il

Mi

=al 7“9+Zh+7‘(9 (r,0) — (a;ﬁ(r,&)—i—

1

.
I

X . 1 oSk
Similarly, we can obtain also that 3;}(0)+3,,(—0) = 0 and, as h (r,0) = = (dffl - 8_m) :
r r
we get ht (r,0) — h, (r,—0) = 0.
In this way we obtain equations for 7 = m and the result follows by induction. [

Proof of Pmposition . Using the tools described in Section [2] and writing f*(y) =

Z? 0 “yj system (p4)) moves to its equivalent differential form

N
dH 4+ e'wf =0, if 0 €0,7),
v
dH 4+ cw; =0, if € [r,2m),
where H = r?/2 and —w;* = aF (r,0)dr + 55 (r,0)df, with
) = Zafﬁj sin @ cosf, and SBF(r,0) Za It sind T g,

J=0

Using these expressions we obtain

[(n—1)/2]
Z a2]+1 1525427 a,
[(nfl)/ﬂ [(n—1)/2] (72)
SEr0)=— > a3, Sy (Or¥T = Y agy 1 Sajra(0)r¥ T,
j=0 Jj=0

Moreover, by Lemma [2.6] we can write also Syji2(6) = sin pyjy1(cosf) and Sajiq(0) =
P2j+1(cosB) for some pyjyq and poj i1 polynomials of degree 2j + 1 in cos 6.
Now, as

pri(0) = FiE(p)0 + St (p, 0),
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it follows from this equation and the previous functions that the first Melnikov function,
My (p) = ri(m) —r] (=), writes as

M)~ B F) ST = i (o)

p p
[(n—1)/2] (n—1)/2]
Z (a2_j 1 aZJ 1)S2j1(m Z a2;+1 1T gy, 1)32]+202]+1-
Jj=0 =0

In this case, M;(p) is a polynomial of degree n Wlth monomials depending on the coeffi-
cients of the e-perturbation of system (54). So has at most n limit cycles bifurcating
from the origin up to first order study. Moreover, as all the coefficients of M;j(p) are
linearly independent, we can chose a system such that the corresponding function M; has
exactly n simple zeros.

In order to study the second Melnikov function we suppose M;(p) = 0. In this case we

get

+ - + -
Qojr11 = —Q2541,15 and Agj1 = Qgj1- (73)

r
that
a;r(p70>_a;(p7 _6):07 61 (p7 )+61 ()0; _9> =
T;r(0> - 7’;(—9) = Oa hf(ﬂ? 9) - h;<p7 _6) = 0.
Taking into account the previous equalities and using the same induction procedure used
for proving Theorem [L.3(b), we can show that Mj(p) has the same form of M;(p) for

every k € N. The proof of this result is quite similar to the proof of Theorem and it
is omitted. ]

)

1 :|:
Using (72), (73), and also the definition hi(r,0) = —( = — 83 > we can easily see
0
0

)

6. FIRST ORDER PERTURBATIONS OF LIENARD FAMILIES OF LOW DEGREE

In this section we present two families for which the number of limit cycles increase
with the order of perturbation but not as fast as the upper bound given in Theorem [I.1]
As an example of the difficulties found during the implementation of this procedure we
will present here only different families of lower degree. In the first one, the number of
limit cycles with a second order study is bigger than the first order, but we have no more
limit cycles with a third order or higher. For the second one, the number of limit cycles
increases with the order, but also in this case this growth stops at a given order, fourth
for this family. Typically, for a fixed family, a kind of saturation growth occurs. This
phenomenon was also showed for the piecewise linear family in [4]. Tt is clear that which
is this maximum number and for which order it is given are very difficult questions that
involve too many computations in our approach. The first family has been studied up to
order 6 and the second one only up to order 5. We have not gone further because of the
computational difficulties.

Proposition 6.1. Forn =1,2,3,4, consider the polynomial system, in Z(jf,

X*:(2,y) = <— y+§:ei ifn@),x), (74)

where ffn are real polynomials of degree n. Then M,y has at most [(n—1)/2] simple zeros
and My has at most n + [(n — 1)/2] simple zeros for N = 2,...,6. Moreover there exist
* such that system has exactly these number of limit cycles, for € small enough.

,n
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Proof. The proof is done in a case by case study. For each degree n, using the procedure
described in Section [2 we obtain that My(p) = P, n(p)/p™ where P, y are polynomials

of degree m,, y for N =1,2,...,6. For simplicity we have not indicated, in P, y, the de-
pendence on the coefficients of the polynomials fzin Here the values of dy are 0,0,1,2,2,4
for N =1,2,...,6 and the values of m,, y are given in the next table:
n\N|1[{2[3]|4]5]|6
1 11112 13]3 1|5
2 11214 161| 7110
3 3|58 ([11]13]|17
4 [3|6|10(14 17|22
For the case corresponding to degree n = 2, the first four polynomials P y, taking
,iQ(x) = a(jii + afix + aiixQ, are
T
Py 5(@11"‘“11)07
2 o s _ _ _
Py —§(af1a;1—ana21)p2 - g(ﬂ((an)Q_(aﬁ)Q) - 4(a12+a1+2))p + 2(aa“1af1—a01a11)7
1 L o
Py :ﬁw(all(a21)2+af1(a2+1)2)p 13 (37T<< ) a21+(a11) ag) + 4(a11a2+2 )
_ 1 _ _
+ 4(6‘;5@;1_“12@21))0 + @W( 2((a11)3—|—(aﬁ)3) - 127(@11@12—6‘?1@?2)
-1\3 1 + 2
+ 3((ay;) +(a11) )—i—24(a13—|—a13))p + 2( m(a 01(%1) +a01(a11) )
_ o 1 N9 _
+ 4(a6rlaf2+a32al+l _%1@12_@02@11)))0 + §7r((a01)2a11+(a01) aﬁ)
206 , . 1 _
24 = — M@n(%l)?)_afl(a;)?))f 648 (27(&11(121 aﬁa;l)(anam +a;r1a;r1)7r2
- 27(2(a1_1a2_1a2_2—I—aﬁaé’la;})+a12(a21) ‘HLB(CL%) )™+ 32(al_1a2_1—afla;1)><
_ 1 —\9 _
(anazl—l—aﬁa;l))f 648 (45((@11) (g — (a11)3a;1)7T - 108((@11)2a22+(af1)2a;2

+ 2(“1_1al_2a2_1 —i—auaﬁa;))w + 16(9(@51%_1 (az?l)?—a&aﬁ(a%f) + 9(a1_1a2_3—af1a;3)
+ 9(ajya5,—afhady) + I agzas —afzad;) + 2((ag;)’ag _(GE)SC‘;)))PZL
1 _ _ _ N9 _
- @(3(%1 - a;rl)(all + GE)((@11)2+(aﬁ)2)W4 - 72((“11)2a12+(a1+1)2@;r2)773
+ 36((“11) (an) + 8(“11“13 aﬁag) + 4((a1_2)2_(a;r2)2))7rz - 72(3((%_1)2@1_2
+ (afl)QaE) + 8(%4"‘“14))7T + 512(6151(@1_1)2@2_1 —a§1(aT1)2a§1))p3

1 L o L
- ﬂ( - 3(%1(@11)3_@31(@?)3)%2 + 12(2(@01a11a12+a8’1af1af2) + a02(a11>2

+ %2(@11) )7+ 16((@61)2af1a51 - (a(J)rl)Zairla;l + 3(a31a1+3—aalafﬁa&aﬁ—aazafz
_ _ ™ _ _ - _
+agzaf; _%3@11)))P2 ) ((%1)2@12 + (agy)?afy + 2(agagar; + a&@&zaﬁ))p
2

- 5((@61)3%] - (a+ )3(11“1)

We have written the parameters a; ; as a;; so write in short. Moreover, the polynomials P 5
and P, ¢ are not written here because the size of them. Instead of P, 4 has 62 monomials,
P, 5 and P56 have 152 and 350, respectively.
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Clearly, P, has no positive zeros, consequently there are no limit cycles bifurcating
from the period annulus up to order 1. Let us continue assuming M;(p) = 0. Under
this assumption, P, is a polynomial of degree 2 with arbitrary coefficients. Then there
exists a choice of perturbed coefficients such that P, and also My, has exactly 2 simple
zeros and from the period annulus we can get 2 limit cycles for system , for € small
enough. When M;(p) = Ms(p) = 0, then all the coefficients of M3 of degree greater than
2 vanish. The same simplification occurs for My, M5, and Mg when the previous My
vanish identically. Consequently, for ¢ small enough, no more than 2 limit cycles can
bifurcate from the period annulus up to orders 3,4,5, and 6. It can be easily checked that
system

Xt (2, y) = (— Y+ <gx2 +x+ %)6 + 261xs2,x>,
X7 (2 ) = (—y — ze, 1),
defined in X7, has M (p) = 0 and My(p) = p* + me1p + eo.

Using the same simplification procedure, the degrees of the polynomials P, y decrease.

Next table shows which they are after the simplifications:

n\N[1]2[3[4]5]6
1 [1[1[1|T[1]1
2 [1[2]2[2]2]2
3 |3[4[4[4[4]4
1 [3[6[6(6/6]6

We remark that the above table does not give the number of limit cycles, only the de-
grees of P, y after the simplification procedure. The number of limit cycles given in the
statement follows studying the independence of the parameters of P, y for each degree
n and order N. We remark that although P, x has degree 6, the coefficient of degree 5
vanishes, consequently M, can have only 5 positive simple zeros.

Finally, we show explicit systems of degrees 1, 3 and 4 such that the corresponding
functions M; are identically zero and the functions M, have 1, 4 and 5 positive simple
zeros, respectively.

Using the described procedure we can prove that the linear system

X (2, y) = (—y +elepr + 1) + %2, 2),
X~ (2 y) = (—y — eepr, ),
defined in ©F, has M;(p) = 0 and My(p) = 7p/2 + 2e¢. Similarly, the cubic system
1 135 945 , 63

Xt y) = (— Y+ <@eox3 + TerQ +x— 5 € + ?egeo>€ + 2611'52,30),

1 8
X~ (2 y) = (—y — 5<@x3 —|—x> + 56355382,1‘),
defined in ©F, has M;(p) = 0 and Ms(p) = p* + Tesp® + eap® + me1p — 63eo(15ep — 2e5).
We remark that there are values of e;, 1 = 0,...,3 such that M, has 4 positive simple
zeros. For example for eg = 1,e; = —417/(317), ey = 467/31,e3 = —207/(317) we have

Ma(p) = (p = 1)(p = 2)(p — 3)(p — 21/31).
Finally, the quartic system
925 8
Xt (2 y) = (— y+ <§x4 + 23 + 601')5 + <§631‘3 + 261:1:'>82,33),
555 15

185 5 1
— o o0\ — .3 e - 2 o 2 Y -
X~ (o)) = ( y+< x° + < 73 e + 14e4>:x €T 17460 426064—|- 262)€,ZL‘>,
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defined in ¥F, has M;(p) = 0 and
Ms(p) = p° + eqp® + mesp® + eap? + merp — e0(1295e2 + 145egeq — 609¢e3) /609.

In general the above polynomial can have at most 5 positive zeros. Moreover, there exist
values of ey, ...,es such that it has 5 positive simple zeros. For example, when ey =
3/2,e; = —830235/(841m), e5 = 644273/1682, e3 = 45885/(8417), ey = —68047/1682, we
have that M, has five positive simple zeros at 1,2,3,4, —5 + 1/1534/58 and one negative

at —5 — /1534/58.

Consequently, there exist values of the perturbation parameters such that system (74)),
for € small enough and n = 1,2,3,4, has 1,2,4,5 limit cycles. 0J

Proposition 6.2. Forn =1,2,3,4, consider the polynomial system
N
Xt (@)= (—y+ [F(x.e),x+ g (z,8) = (—y—l—Zsi in a:+z<€gm ), (75)
i=1

defined in Z , where ijfn and gfn are polynomaials of degree n. Then the functions My
hcwe at most n,2n — 1,2n, 3n, 3n simple zeros for N = 1,2,...,5. Moreover there exist

and gm such that system (75)) has these number of lzmzt cycles for € small enough.

’L?’L

Proof. The proof follows the same procedure as we have described in the proof of Propo-
sition . In fact the Melnikov functions take the same form, My(p) = P, (p)/p?, but
with different degrees and coefficients. In this case the values of dy are 0,0,1,2,3 for
N =1,2,...,5 and the values of the degrees of the polynomials P, y are m,; = n and
m, Ny =Nn—1for N=2,...,5.

We note that the maximum number of limit cycles appears up to order N = 4. Now
we will only provide explicit examples exhibiting this maximum number of limit cycles,
for each degree n in the statement. The studies of lower order can be done similarly.

The linear Liénard system with N = 4 given by

e
X+:(x’,y’):< Y+ (eo + ) + 2z, :1:—21 )
€o

1
X (2 y) = ( —y+(eg—x)e+ 5(—460 +eg)e’, - 26—15 + 2€0€2>7
€o
has Mi(p) = My(p) = M3(p) = 0 and
1 4
My(p) = e <7rp3 + exp” + Te1p + g@%).

The quadratic system (75)) with N =4 and
8164%—18060%—4 2 3
e

fH(x,e) =(2® +x +ep)e +

18 ’
9ey — 4e2 — 36
gt (z,¢) =2%e* + bes’c” + 2 fg 0,
1 20 2(3 )
f(z,) ==(=52% — 32 + 3e)e — &2 — —Cped 4 Mwa‘l,
3 €0 3 360

1 1
g (x,¢) :§(7x2 + 18e9)e® + e—(6ege5x2 —e1)e’,
0

has Mi(p) = My(p) = M3(p) = 0 and

1 119292 A
Mi(p) = _(mp +mesp’ + eap’ + mesp’ + eap? +merp + geo)
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The cubic system ([75)) with N = 4 and

¥ = —y+ (agr? + x4 ap)e + <£x +a x>52
X+ - Yy 8 0 120 7
Yy = x+x253,
/ 571 2 2 3 3.4
¥ = —y+ (— Teor 8% ~ T+ a0>5—|— Aj(x)e? + Ag()e? + asae?,
X
318
Yy = x+ade+ < asr? + 2a0>€2 + As(x)e® + agx’et,
1525
where
163
Al(l’) = —EOJI + Cl(;l’z — a7 + ag,
343228 11 2284
A _ (_ 2 11 ) 3 ’
2(7) 23256255 127 150510087 + 2
318 42 1
As(z) = (1525 arag + an + §a6 + 1)x2 + asx + 2agar + ay,
has M;(p) = Ma(p) = M3(p) = 0. And choosing
ap = €o,
4 €1
0] = ———
1 3 a07
2 + 318 aLa 2a
ay = —ey + ——a’a -
2 = 50 T s 0ils — Mar 05
16 4568 a 2284
az = 3 €3 1525a0a7a8 aeQo 1525 aas,
2e4 + + + + 103 + 106
= —2¢, + —apa + —agar + —arag + —a, + —a
Qy 4308 407 376 401 15258;
o 26 B 343228 e 64316 B 376 4 636 636 —l—i
5T 9 T 939562578 T 2087510 T 13725 T 1525 T 72
48 24 353934 201099590064 5 159
ag — ——

61%° 61 T 2325625 7™ T 5208531640625 %% 30570
2048 3439367744

97 = =155 5516615625
" 448350000
5 150098827
we obtain
1 /13863
My(p) = ; (6553607T'09 + egp8 + 7re7p7 + 66p6 + 7Te5,05 + e4p4 + 7r63p3 + 62,02 +me1p+ eg) .

The quartic system (|75)) with N =4 and

4021
' = —y+ (a02® +ap + x)e + <a9x4 + 2 anz® + a1>52 + agrte® + azzet,
Xt
617
y = 1+ A(r)e — ganngQ + Ag(x)e® + tasa?,
= —y+ As(x)e + —6—17611137 3e2 + Ay()ed + azx3et,
X~ 58

Yy = x4 As(x)e® + Ag(x)e?,
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with

A4 (@) 4+_<11177145 , 2551
1) =

373984 1 T 403

2
(110>ZE — Z + ap,

41642856783675 ! 1250598335 5 . 21416500 , 16a 11a> 3
0~ 7508

i s, | o
() =\ "T30861032256 “1' T oatoraz 0" Tagies1 0T 30T 1o

<11177145 5 10204

93496 1T 403 aoa10>1;

11177145 92551
A“@:I%+<33%4“%+4%“m%?_m+%’
) (41642856783675 | 1250598335, | 21416500 , 16 11 ) 5
xTr) = —_—a10a R _
4 139864032256 11 T To419722 0T 1681 (10 T 30 T 1998
1
+—93496a0(11177145a§14—2367328a10)x,
33 3725715 2954
A5 (@) = 75" + asa” <3ﬂw84ai‘Flmmam>w2+2““
Ao() (16091363085 s, 120441493 37 ) A <7375a A >x2%_a
T)=|——0 ———a100 — )
6 21691072 " 701220 M 157 116 M T !

has M (p) = May(p) = M3(p) = 0. Choosing the values

ap = €,
€1
ap = —,
€0
2054 , 3725715 ,
az =52 = 200 + Toagto + Jopaerdgir,
11177145, 5102
as =2e3 + —186992 a1aj; malalo,
3 2954 1, 1241905, 2 , 3673 23
(4 =56~ 3aop ™0 T 500~ rsggy M T 30000 T Ty @it rdols,
8 41269745055 916501 3725715 8
a5 =365+ ~51eaTo7a 1% T T3arg @090 + Jgeggs hia7 + 300t
5908
+ 1209a10a7 +4ay — ﬁau,

vy = DDy 21T OSTOBSISAO0TS 1\ 246061222155 ,
72 T 111 T 28182602499584 60738367456

58101015 , 40871 17041717574 , 25

+ 1205036 “11% T 1536 “10% T 5538537617370 ~ 37

_ I39TTAASTOMOSIATS 56001305, 686648

26153455119613952 11~ 13837408 11 T 313131

12 416237010695545005 .  993055562624097 82710873

a7 =~ § e~ s sias3s0r. VT 174830040320 190t 3730850 1!

1751870985349 7375 242861 5553

S2r016600 "1™ ~ Tqg @001 + Fogsg @104 T ooc

-5 a1107

apAio,

Qg

1108,
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22050 408588973833 5 64879 1372

% = 13123% T 812413343612 10 T 1312301 T 13123 ™
14949785585339325 , 12575809204 ,
1507839165743872 ' 21010689921 '

320 1724620185 , 2467922575
T T 3397 Tggaora T T 4984056 0N
1y TOOSTS  L0TSAOGTISTS
1023106108 237360617056 1V’
556300
M= T 911631

we have that

My(p) =

1 s 328474
(e 4 menptt + e10p™ + meop” + exp® + mers

p? \6670125

4
+%f+ﬂ%f+@f+ﬂ%f+@f+ﬂﬁﬂ+?a.

For all the studied cases, n = 1,2, 3,4, the first three Melnikov functions vanish iden-
tically and the fourth, My, can be written with arbitrary coefficients, e;. Consequently
up to an study of fourth order and for € small enough, system has 3n limit cycles,
bifurcating from some chosen 3n circumferences, for n = 1, 2, 3, 4. O
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