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Singular values and bounded Siegel disks
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Abstract

Let f be an entire transcendental function of finite order and A be a forward invariant
bounded Siegel disk for f with rotation number in Herman’s class H. We show that if f has
two singular values with bounded orbit, then the boundary of A contains a critical point. We
also give a criterion under which the critical point in question is recurrent. We actually prove
a more general theorem with less restrictive hypotheses, from which these results follow.

1. Introduction

We consider the dynamical system generated by the iterates of an entire transcendental
function f : C — C, that is a function which is holomorphic on the complex plane C and
has an essential singularity at infinity (in general, we will omit the word ’transcendental’).
In this setup, there is a dynamically natural partition of the phase space into two completely
invariant subsets: the Fatou set F(f), formed by those z € C for which the family of
iterates { f"},cn is normal in the sense of Montel in some neighbourhood of z; and the Julia
set J(f), its complement. Orbits in the Julia set exhibit chaotic behavior — in fact, 7 (f) is
the closure of the repelling periodic points of f.

The Fatou set is open, possibly with infinitely many components, called Fatou compon-
ents. The periodic ones are completely classified into basins of attraction of attracting or
parabolic cycles, Siegel disks (topological disks on which a certain iterate of f is conjugate
to a rigid irrational rotation of angle 6, called the rotation number) or Baker domains (re-
gions on which iterates converge uniformly to infinity). Non-periodic Fatou components are
called preperiodic if they are eventually mapped to a periodic component, and wandering
otherwise. Baker and wandering domains are types of Fatou components which appear only
in the transcendental setting. For a classification of Fatou components in the transcendental
case see e.g. [Be].
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