
MELNIKOV ANALYSIS IN NONSMOOTH
DIFFERENTIAL SYSTEMS WITH NONLINEAR

SWITCHING MANIFOLD

Jéfferson L. R. Bastos, Claudio A. Buzzi

Universidade Estadual Paulista, IBILCE-UNESP
Av. Cristovão Colombo, 2265, 15.054-000, S. J. Rio Preto, SP, Brasil

jeferson@ibilce.unesp.br and buzzi@ibilce.unesp.br

Jaume Llibre
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Abstract. We study the family of piecewise linear differential
systems in the plane with two pieces separated by a cubic curve.
Our main result is that 7 is a lower bound for the Hilbert num-
ber of this family. In order to get our main result, we develop
the Melnikov functions for a class of nonsmooth differential sys-
tems, which generalizes, up to order 2, some previous results in
the literature. Whereas the first order Melnikov function for the
nonsmooth case remains the same as for the smooth one (i.e. the
first order averaged function) the second order Melnikov function
for the nonsmooth case is different from the smooth one (i.e. the
second order averaged function). We show that, in this case, a new
term depending on the jump of discontinuity and on the geometry
of the switching manifold is added to the second order averaged
function.
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1. Introduction and statement of the main results

In recent years, there has been a growing interest in studying non-
smooth differential systems, motivated mainly by their engineering ap-
plications. In particular, piecewise linear differential systems have been
used to model many real processes and different modern devices, for
more details see, for instance, [7] and the references therein. In the
smooth differential systems many results have been derived under con-
venient smoothness assumptions. Thus, the following natural questions
arise: What results from the smooth differential systems theory extend
to the nonsmooth ones? How we must modify the results from the
smooth differential systems theory in order that they work for the non-
smooth ones? These questions are not merely academic because the
nonsmooth differential systems appear in a natural way in the context
of many applications, see for instance [5, 27, 30, 31].

Here, we are mainly interested in studying the existence of limit cy-
cles for piecewise linear differential systems with two pieces separated
by a nonlinear switching curve. The Averaging Theory is a classical
method to attack this problem. It has been developed also for non-
smooth differential systems (see [15, 18, 19, 23]). However, in the pre-
vious works it is assumed some strong conditions on the switching set,
which do not hold when it is a cubic, for instance. So here, we also de-
velop the bifurcation functions of first and second order for computing
periodic solutions of a wider class of nonsmooth differential systems.
Usually, these bifurcation functions are called Melnikov Functions. Ad-
ditionally, we compare them with the Melnikov functions of first and
second order for smooth systems.

Usually, piecewise linear differential systems have been considered
when a straight line separates the plane in two half–planes. In each
of the half–planes we have a linear differential system. If both linear
systems coincide in the switching line we call it a continuous piecewise
linear differential system. Otherwise we call it a discontinuous piece-
wise linear differential system. In recent years, many authors have
studied intensively the number of limit cycles of discontinuous piece-
wise linear differential systems with two zones separated by a straight
line, see for instance [1, 4, 6, 8, 9, 10, 12, 13, 14, 17, 21, 22, 24, 25, 26]
and the references quoted in these papers. Up to now all results of
these papers provide examples of at most 3 crossing limit cycles for
this class of discontinuous systems. It remains the open question: Is 3
the maximum number of crossing limit cycles that such discontinuous
differential systems can exhibit?
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In this paper, we consider the family Lh of piecewise linear differ-
ential systems in the plane with two pieces separated by the curve
Σ = h−1(0), h(x, y) = y − x3. More precisely, we shall study the class
of discontinuous piecewise linear differential systems obtained by per-
turbing up to order N ∈ N in the small parameter ε the linear center
ẋ = y, ẏ = −x, i.e.

(1)

ẋ =





y +
N∑
i=1

εiP+
i (x, y), y ≥ x3

y +
N∑
i=1

εiP−

i (x, y), y ≤ x3

ẏ =





−x+
N∑
i=1

εiQ+
i (x, y), y ≥ x3

−x+
N∑
i=1

εiQ−

i (x, y), y ≤ x3

where the functions P±

i (x, y) and Q±

i (x, y) are the following polynomi-
als of degree one

P+
i (x, y) = a0i + a1ix+ a2iy,

P−

i (x, y) = b0i + b1ix+ b2iy,
Q+

i (x, y) = α0i + α1ix+ α2iy,
Q−

i (x, y) = β0i + β1ix+ β2iy.

We shall assume that N = 1, 2.

As usual, we denote by HLh
the maximum number of limit cycles

that piecewise linear differential systems in Lh can have. This number
is called Hilbert number. Previous results show that HLA

≥ 3, when
A : R2 → R is a linear function. Our main result provides a lower
bound for HLh

, when h(x, y) = y − x3.

Theorem A. For |ε| 6= 0 sufficiently small, there exist piecewise linear
differential systems of kind (1) admitting at least 7 limit cycles, which
bifurcate from the periodic orbits of the linear center. Consequently,
for h(x, y) = y − x3 we have HLh

≥ 7.

Theorem A is proved in Section 3. Its proof is mainly based on
the Chebyshev Theory, recently extended for Chebyshev systems with
positive accuracy (see [29]), and Melnikov Theory. In order to prove
Theorem A we develop the Melnikov functions for a class of nonsmooth
differential systems (see Theorem B in Section 2), which generalizes,
up to order 2, the results of [15, 19].
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It is important to mention that at this moment in the literature the
maximum number of limit cycles exhibited by piecewise linear differen-
tial systems in two zones separated by a straight line is three. Theorem
A shows that the nonlinearity of the switching curve Σ is responsible
for the increasing of the number of limit cycles. In fact, this phenom-
ena has already been observed in [2, 28]. Indeed, in [28] it was proved
that the number of limit cycles can increase arbitrarily with the num-
ber of oscillations of the switching curve Σ. By oscillations of Σ, one
can think as the transversal intersections of Σ with the straight line
x = 0. For instance, in [28] the authors considered the switching curve
Σ = {(0, y) if y ≤ 0} ∪ {(h(y), y) if y > 0}, where

h(y) =





k sin(πy), 0 ≤ y ≤ 2n+1
2

,

(−1)nk, y > 2n+1
2

.

It was shown that the number of limit cycles of a particular piecewise
linear differential system corresponds to the number of zeros of the
function h, which corresponds to the intersections between Σ and the
straight line x = 0.

2. Melnikov functions for a class of nonsmooth systems

In order to state our results for the nonsmooth differential systems,
we need some notations and definitions. Let D be an open set of Rd,
S
1 = R/T for some period T > 0, andN a positive integer. We consider

a finite set of Cr (r ≥ N +1) functions θi : D → S1 for i = 1, 2, . . . ,M,
satisfying 0 < θ1(x) < θ2(x) < · · · < θM (x) < T for all x ∈ D. For
completeness, we take θ0(x) ≡ 0 and θM+1(x) ≡ T.

We consider the following nonsmooth differential system

(2) ẋ =
N∑

i=1

εiFi(t, x) + εN+1R(t, x, ε),

with

Fi(t, x) =





F 0
i (t, x), 0 < t < θ1(x),

F 1
i (t, x), θ1(x) < t < θ2(x),

. . .
FM
i (t, x), θM (x) < t < T,

and

R(t, x, ε) =





R0(t, x, ε), 0 < t < θ1(x),
R1(t, x, ε), θ1(x) < t < θ2(x),
. . .
RM(t, x, ε), θM(x) < t < T,
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where F j
i : S1 × D → Rd, Rj : S1 × D × (−ε0, ε0) → Rd, for i =

1, 2, . . . , N and j = 0, 1, . . . ,M, are Cr functions, r ≥ N + 1, and
T -periodic in the variable t. Notice that, the switching manifold is
given by Σ = {(θi(x), x) : x ∈ D, i = 0, 1, . . . ,M,M + 1}. Through-
out the paper we shall also denote F j(t, x, ε) =

∑N

i=1 ε
iF j

i (t, x) +
εN+1Rj(t, x, ε).

The Melnikov Theory and the Averaging Theory are classical tools to
investigate the existence of periodic solutions of perturbative systems
of kind (2). In short, both theories provide a sequence of functions ∆i,
i = 1, 2, . . . , k, which “control” the existence of isolated periodic solu-
tions of (2). These functions are called Melnikov Functions or Bifurca-
tion Functions. In [19], the averaging theory at any order was developed
for systems of kind (2) assuming that the functions θi, i = 1, 2, . . . ,M,
were constant. It was shown that in this case the bifurcation func-
tions coincide with the averaged functions, denoted by fi’s, for smooth
systems (see [20]). In particular, for i = 1, 2, we have

(3)

f1(x) =

∫ T

0

F1(s, x)ds and

f2(x) =

∫ T

0

[
DxF1(s, x)

∫ s

0

F1(t, x)dt+ F2(s, x)

]
ds.

Nevertheless, in [18] it was observed that higher order averaged func-
tions, fi, i ≥ 2, do not always control the bifurcation of isolated periodic
solutions for nonsmooth differential systems, and a strong degenerate
condition on the switching manifold was stablished in order that f2
stands as the bifurcation function of order 2 (see hypotheses (Hb2) of
[18, Theorem B]).

As the main result of this section, Theorem B shows that the Mel-
nikov functions of first and second order, ∆1 and ∆2, of system (2)
write

(4) ∆1(x) = f1(x) and ∆2(x) = f2(x) + f ∗

2 (x),

where f1 and f2 are given by (3), and

f ∗

2 (x) =
M∑

j=1

(
F j−1
1 (θj(x), x)− F j

1 (θj(x), x)
)
Dxθj(x)

∫ θj(x)

0

F1(s, x)ds.

This generalizes up to order 2 the results of [15, 19] for a wider class
of nonsmooth differential equations. In what follows, J∆i(x) denotes
the corresponding Jacobian matrix of ∆i evaluated at x.
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Theorem B. Consider the nonsmooth differential system (2) and the
functions ∆1 and ∆2 defined in (4). So, the following statements hold.

i. (First Order) Assume that a∗ ∈ D satisfies ∆1(a
∗) = 0 and

det (J∆1(a
∗)) 6= 0. Then, for |ε| 6= 0 sufficiently small, there

exists a unique T -periodic solution x(t, ε) of system (2) such
that x(0, ε) → a∗ as ε → 0.

ii. (Second Order) Assume that ∆1(x) ≡ 0 and that a∗ ∈ D
satifies ∆2(a

∗) = 0 and det (J∆2(a
∗)) 6= 0. Then, for |ε| 6=

0 sufficiently small, there exists a unique T -periodic solution
x(t, ε) of system (2) such that x(0, ε) → a∗ as ε → 0.

From statement (i) of Theorem B, we see that the first order Mel-
nikov function ∆1(x) for nonsmooth differential systems coincides with
the corresponding one f1(x) for smooth differential systems. This had
already been observed in [18]. The second order Melnikov function for
smooth differential systems is equal to f2(x). Indeed, for smooth differ-
ential systems the Melnikov functions are, in some sense, equivalent to
the averaged functions at any order (for more details, see [11]). Nev-
ertheless, from statement (ii) of Theorem B, the corresponding second
order Melnikov function for nonsmooth differential systems of kind (2)
has the extra term f ∗

2 (x), which depends on the jump of discontinuity
and on the geometry of the switching manifold measured, respectively,
by the expressions

F j−1
1 (θj(x), x)− F j

1 (θj(x), x) and Dxθj(x)

∫ θj(x)

0

F1(s, x)ds.

We notice that, in particular, if either the vector field F1 is con-
tinuous, or if the the switching manifold Σ is “vertical”, i.e. Dxθj(x)
vanishes identically for j = 1, 2, . . . ,M, then the extra term f ∗

2 van-
ishes. Under one of these two last assumptions Theorem B provides the
known results given in [3, 20] for smooth systems, and in [15, 18, 19, 23]
for nonsmooth differential systems.

In what follows, before the proof of Theorem B, we provide a general
geometric interpretation for the increment f ∗

2 . In short, the next result
states that f ∗

2 6= 0 stands as a kind of transversal condition between the
switching manifold Σ and the average of the perturbation F1, which is
highly related to hypotheses (Hb2) of [18, Theorem B]. Accordingly,
given p = (tp, xp) ∈ Σ, we define the vector

v(p) =

(
0,

1

tp

∫ tp

0

F1(t, xp)dt

)
.
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Notice that the second component of v(p) is the average of the first
order perturbation F1 of (2) computed on the backward orbit {(t, xp) :
t ∈ [0, tp]} of the unperturbed differential equation (2)

∣∣
ε=0

with initial
condition (t(0), x(0)) = p.

Proposition 1. If f ∗

2 6= 0, then there exists p ∈ Σ such that v(p) is
transversal to Σ at p.

Proof. We know that, for p = (tp, xp) ∈ Σ, tp = θj(xp) for some j ∈
{0, 1, . . . ,M,M + 1}. Notice that

Dxθj(xp)

∫ θj(xp)

0

F1(s, x)ds = 0

is equivalent to v(p) ∈ TpΣ. Consequently, v(p) ∈ TpΣ for every p ∈ Σ
implies that f ∗

2 = 0. �

Proof of Theorem B. We denote the solution of (2) by

(5) ϕ(t, x, ε) =





ϕ0(t, x, ε), 0 ≤ t ≤ α1(x, ε);
ϕ1(t, x, ε), α1(x, ε) ≤ t ≤ α2(x, ε);
· · ·
ϕM(t, x, ε), αM(x, ε) ≤ t ≤ T.

In the above expression, αj(x, ε) is the flying time that the trajectory
ϕj−1(·, x, ε), starting at ϕj−1(αj−1(x, ε), x, ε) ∈ D for t = αj−1(x, ε),
reaches the manifold {(θj(x), x) : x ∈ D} ⊂ Σ (see Figure 1), that is,

αj(x, ε) = θj(ϕj−1(αj(x, ε), x, ε)).

for j = 1, 2, . . . ,M, α0(x, ε) = 0, and αM+1(x, ε) = T. Moreover,

(6)

∂ϕj

∂t
(t, x, ε) = F j(t, ϕj(t, x, ε), ε), for j = 0, 1, . . . ,M, where

{
ϕ0(0, x, ε) = x,

ϕj(αj(x, ε), x, ε) = ϕj−1(αj(x, ε), x, ε), for j = 1, 2, . . . ,M.

From (6) and from the differential dependence of the solutions on the
initial conditions and on the parameter, we can see inductively that
αj(x, ε) and ϕj(t, x, ε) are Cr functions, for j = 0, 1, . . . ,M.

We notice that the recurrence (6) describes initial value problems.
Therefore, it is equivalent to the following recurrence:

ϕ0(t, x, ε) = x+

∫ t

0

F 0(s, ϕ0(s, x, ε), ε)ds,

ϕj(t, x, ε) = ϕj−1(αj(x, ε), x, ε) +

∫ t

αj(x,ε)

F j(s, ϕj(s, x, ε), ε)ds,
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x0

x

t

ϕ(T, x0, ε)

0 αj−1(x0, ε) αj(x0, ε)

θ1(x) · · · θj−1(x) θj(x) · · · θM(x)

T

ϕ0(t, x0, ε)
ϕj−1(t, x0, ε)

ϕM(t, x0, ε)

Figure 1. Illustration of a solution (5) of system (2)
starting at x0 and crossing the switching manifold

for j = 1, 2, . . . ,M. So, we may compute

ϕM(t, x, ε) = x+

M∑

j=1

∫ αj(x,ε)

αj−1(x,ε)

F j−1(s, ϕj−1(s, x, ε), ε)ds

+

∫ t

αM (x,ε)

FM(s, ϕM(s, x, ε), ε)ds.

The displacement function is given by

(7) ∆(x, ε) = ϕ(T, x, ε)− x = ϕM(T, x0, ε)− x.

Notice that, from the above comments, ∆(x, ε) is a Cr function. Then,
expanding (7) around ε = 0 we have

∆(x, ε) = ∆0(x) + ε∆1(x) + ε2∆2(x) +O(ε3).

We observe that ∆0(x) ≡ 0, because ∆0(x) = ∆(x, 0) = ϕ(T, x, 0)− x.
The functions ∆1(x) and ∆2(x) are called Melnikov functions of first
and second order, respectively.

The displacement function reads

(8) ∆(x, ε) = ϕM(T, x, ε)−x =

M+1∑

j=1

∫ αj(x,ε)

αj−1(x,ε)

F j−1(s, ϕj−1(s, x, ε), ε)ds.
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In what follows, we compute the expansion, around ε = 0, of the M+1
summands of (8). For the first one we obtain

(9)

∫ α1(x,ε)

0

F 0(s, ϕ0(s, x, ε), ε)ds

=

∫ α1(x,ε)

0

[εF 0
1 (s, ϕ0(s, x, ε)) + ε2F 0

2 (s, ϕ0(s, x, ε)) +O(ε3)]ds

= ε

(∫ θ1(x)

0

F 0
1 (s, x)ds

)
+ ε2

(∫ θ1(x)

0

[
DF 0

1 (s, x)
∂ϕ0

∂ε
(s, x, 0)

+ F 0
2 (s, x)

]
ds+ F 0

1 (θ1(x), x)
∂α1

∂ε
(x, 0)

)
+O(ε3).

In order to finish the computation of the second summand we have to
compute the terms ∂ϕ0

∂ε
(s, x, 0) and ∂α1

∂ε
(x, 0). Expanding the equation

ϕ0(t, x, ε) = x+

∫ t

0

F 0(s, ϕ0(s, x, ε), ε)ds

around ε = 0 we obtain

x+ ε
∂ϕ0

∂ε
(t, x, 0) +O(ε2) = x+ ε

∫ t

0

F 0
1 (s, x)ds+O(ε2).

So, we get

(10)
∂ϕ0

∂ε
(t, x, 0) =

∫ t

0

F 0
1 (s, x)ds.

In the same way, expanding the equation α1(x, ε) = θ1(ϕ0(α1(x, ε), x, ε))
around ε = 0 we obtain

α1(x, 0) + ε
∂α1

∂ε
(x, 0) +O(ε2) =

θ1(x) + εDxθ1(x)

(
∂ϕ0

∂t
(θ1(x), x, 0)

∂α1

∂ε
(x, 0) +

∂ϕ0

∂ε
(θ1(x), x, 0)

)
+O(ε2).

Since ϕ0(t, x, 0) = x for all t we get

(11)
∂α1

∂ε
(x, 0) = Dxθ1(x)

∫ θ1(x)

0

F 0
1 (s, x)ds.
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Substituting (10) and (11) in (9) we have the expression for the first
summand of (8)

(12)

∫ α1(x,ε)

0

F 0(s, ϕ0(s, x, ε), ε)ds = ε

(∫ θ1(x)

0

F 0
1 (s, x)ds

)

+ ε2

(∫ θ1(x)

0

[
DxF

0
1 (s, x)

∫ s

0

F 0
1 (t, x)dt + F 0

2 (s, x)

]
ds

+ F 0
1 (θ1(x), x)Dxθ1(x)

∫ θ1(x)

0

F 0
1 (s, x)ds

)
+O(ε3).

The other summands of (8) can be computed in a similar way and they
are given by

(13)

∫ αj(x,ε)

αj−1(x,ε)

F j−1(s, ϕj−1(s, x, ε), ε)ds = ε

(∫ θj(x)

θj−1(x)

F j−1
1 (s, x)ds

)

+ ε2

(∫ θj(x)

θj−1(x)

[
DxF

j−1
1 (s, x)

∫ s

0

F1(t, x)dt+ F j−1
2 (s, x)

]
ds

+ F j−1
1 (θj(x), x)Dxθj(x)

∫ θj(x)

0

F1(s, x)ds

− F j−1
1 (θj−1(x), x)Dxθj−1(x)

∫ θj−1(x)

0

F1(s, x)ds

)
+O(ε3).

From (12) and (13), we have that the Melnikov functions of first and
second order are given by

∆1(x) =

∫ T

0

F1(s, x)ds

and

∆2(x) = f2(x) + f ∗

2 (x),

where

f2(x) =

∫ T

0

[
DxF1(s, x)

∫ s

0

F1(t, x)dt+ F2(s, x)

]
ds

and

f ∗

2 (x) =

M∑

j=1

(
F j−1
1 (θj(x), x)− F j

1 (θj(x), x)

)
Dxθj(x)

∫ θj(x)

0

F1(s, x)ds.
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From the definition of the displacement function in (7), it is clear that
the T -periodic solutions x(t, ε) of system (2), satisfying x(0, ε) = x, are
in one-to-one correspondence to the zeros of the equation ∆(x, ε) = 0.

Now, define ∆̂(x, ε) = ∆(x, ε)/ε = ∆1(x) +O(ε). From hypotheses,
we have that

∆̂(a∗, 0) = ∆1(a
∗) = 0, and det

(
∂∆̂

∂x
(a∗, 0)

)
= det (J∆1(a∗)) 6= 0.

Therefore, from the Implicit Function Theorem, we get the existence
of a unique Cr function a(ε) ∈ D such that a(0) = a∗ and ∆(a(ε), ε) =

∆̂(a(ε), ε) = 0, for every |ε| 6= 0 sufficiently small. This completes the
proof of statement (i).

Finally, assuming that ∆1(x) ≡ 0, define ∆̃(x, ε) = ∆(x, ε)/ε2 =
∆2(x) + O(ε). So, the proof of statement (ii) follows analogously to
the proof of statement (i). �

3. Bifurcation of limit cycles

In this section we shall apply the Melnikov functions developed in
the previous section to study the bifurcation of limit cycles of system
(1) for |ε| 6= 0 sufficiently small. Then, Theorem A will be a direct
consequence of Proposition 5.

A useful tool to study the number of isolated zeros of a function is
the Chebyshev Theory. We recall that the Wronskian of the ordered
k + 1 functions u0, . . . , uk is

(14) Wk(x) = Wk(u0, . . . , uk)(x) = det
(
M(u0, . . . , uk)(x)

)
,

where

M(u0, . . . , uk)(x) =




u0(x) · · · uk(x)
u′

0(x) · · · u′

k(x)
...

. . .
...

u
(k)
0 (x) · · · u

(k)
k (x)


 .

We say that F = [u0, u1, . . . , un] is an Extended Complete Chebyshev
system or an ECT-system on a closed interval [a, b] if and only if
W (u0, u1, . . . , uk)(x) 6= 0 on [a, b] for 0 ≤ k ≤ n, see [16]. In what
follows, Span(F) denotes the set of all functions given by linear combi-
nations of the functions of F . A classical result concerning ECT-system
is the following:

Theorem 2 ([16]). Let F = [u0, u1, . . . , un] be an ECT-system on
a closed interval [a, b]. Then, the number of isolated zeros for every
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element of Span(F) does not exceed n. Moreover, for each configuration
of m ≤ n zeros, taking into account their multiplicity, there exists
F ∈ Span(F) with this configuration of zeros.

In [29], the above result was extended for Chebyshev systems with
positive accuracy. In what follows, we say that a zero of a function
is simple if its Jacobian matrix evaluated at the zero is a nonsingular
matrix.

Theorem 3 ([29]). Let F = [u0, u1, . . . , un] be an ordered set of func-
tions on [a, b]. Assume that all the Wronskians Wk(x), k = 0, . . . , n−1,
are nonvanishing exceptWn(x), which has exactly one zero on (a, b) and
this zero is simple. Then, the number of isolated zeros for every ele-
ment of Span(F) does not exceed n+1. Moreover, for any configuration
of m ≤ n + 1 zeros there exists F ∈ Span(F) realizing it.

As a first application of Theorem B we consider piecewise linear
differential systems (1) with N = 1. The next result shows that in this
case the first order Melnikov function ∆1 has at most 3 isolated zeros.
From statement (i) of Theorem B, this means that the differential
system (1) has at most 3 limit cycles bifurcating from the periodic
orbits of the linear center. Moreover, we shall see that this maximum
number is reached by particular examples.

Proposition 4. Consider the piecewise linear differential system (1)
with N = 1, and let ∆1 be its first order Melnikov function (4). Then,
the number of isolated zeros of ∆1 does not exceed 3. Moreover, there
exist linear differential systems (1) such that ∆1 has exactly 3 simple
zeros.

Proof. In order to apply the Melnikov method, we must write the dif-
ferential system (1) in polar coordinates. Performing the change of
variables (x, y) = (r cos θ, r sin θ) and taking θ as the new independent
variable, the differential system (1) is transformed into the differential
equation

dr

dθ
= εF±

1 (θ, r) + ε2F±

2 (θ, r) +O(ε3),

where

F+
1 (θ, r) = −(a01 cos θ + b01 sin θ)− r

2

(
a11 + b21

)
−

r
2

(
(a11 − b21) cos(2θ) + (a21 + b11) sin(2θ)

)

and

F−

1 (θ, r) = −(α01 cos θ + β01 sin θ)− r
2

(
α11 + β21

)
−

r
2

(
(α11 − β21) cos(2θ) + (α21 + β11) sin(2θ)

)
.
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The switching curve Σ is given in polar coordinates by sin θ =
r2 cos3 θ. It means that for each r > 0 there exist two angles θ1(r) ∈
[0, π

2
] and θ2(r) = θ1(r)+π ∈ [π, 3π

2
] such that the circle x2+y2 = r2 in-

tersects Σ at the points (r cos θ1(r), r sin θ1(r)) and (r cos θ2(r), r sin θ2(r))
(see Figure 2).

θ1
x

x3
r

Σ

Figure 2. Identities involving x, r and θ1.

According to the theory developed in Section 2, the Melnikov func-
tion of first order is given by

∆1(r) =
1

2π

(∫ θ1(r)

0

F−

1 (θ, r)dθ +

∫ θ1(r)+π

θ1(r)

F+
1 (θ, r)dθ +

∫ 2π

θ1(r)+π

F−

1 (θ, r)dθ

)

= γ0 cos θ1(r) + γ1r + γ2 sin θ1(r),

where

(15)
γ0 = −2(b01 − β01),
γ1 =

−π
2
(a11 + b21 + α11 + β21),

γ2 = a01 − α01.

From Theorem B, each isolated zero of ∆1(r) = 0 corresponds to a
limit cycle of (1). We prove now that the maximum number of positive
zeros ∆1(r) = 0 is three. As we can see in Figure 2, the variables x, r
and θ1 are related by the identities

(16) r2 = x2 + x6, cos θ1 =
x

r
, and sin θ1 =

x3

r
.
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For r > 0 we have that ∆1(r) = 0 if and only if r∆1(r) = 0. So,
the maximum number of limit cycles of (1) obtained by the first or-
der Melnikov method is the maximum number of positive zeros of the
polynomial

(17) p1(x) = γ0 + γ1(x+ x5) + γ2x
2.

Consider the ordered set of functions F = [u0, u1, u2], where u0(x) = 1,
u1(x) = x+ x5 and u2(x) = x2. We have that the Wronskians, defined
in (14), are W0(x) = 1, W1(x) = 1 + 5x4 and W2(x) = 2 − 30x4. The
WronskiansW0(x) andW1(x) do not vanish in R andW2(x) has exactly
one positive zero. So, according to Theorem 3, three is the maximum
number of positive roots of polynomial (17) and there is a choice for
γ0, γ1 and γ2 such that p1(x) has exactly three zeros. From (15), it is
clear that for any choice of γ’s it is possible to obtain the corresponding
perturbation. This concludes the proof of Proposition 4. �

Example 1. In what follows, we exhibit a concrete perturbation pre-
senting three limit cycles for |ε| 6= 0 sufficiently small. For γ0 = −0.05,
γ1 = 1 and γ2 = −2, the polynomial (17) has three positive roots (see
Figure 3). It is clear that the linear system

0.2

0.1

-0.1

-0.2

-0.3

-0.2 0.2 0.4 0.6 0.8 1.0

Figure 3. Graph of p1(x) = x5 − 2x2 + x− 0.05.

−2(b01 − β01) = −0.05,
−π
2
(a11 + b21 + α11 + β21) = 1,

a01 − α01 = −2,

has infinity many solutions. For example, we can take a01 = −2, a11 =
−2/π, b01 = 1/40 and all other coefficients equal to zero. So, for |ε| 6= 0
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sufficiently small, system

ẋ =

{
y − 2ε(1 + 1

π
x), if y ≥ x3,

y + 1
40
ε, if y ≤ x3,

ẏ = −x

has three limit cycles.

As a second application of Theorem B, we consider piecewise linear
differential systems (1) with N = 2. We impose conditions on the
coefficients of P±

1 and Q±

1 in order that the first order Melnikov function
∆1 vanishes identically. The next result shows that in this case the
second order Melnikov function ∆2 has at most 7 isolated zeros. From
statement (ii) of Theorem B, this means that the differential system
(1) has at most 7 limit cycles bifurcating from the periodic orbits of
the linear center. Moreover, we shall see that this maximum number
is reached by particular examples. This proves Theorem A.

Proposition 5. Consider the piecewise linear differential system (1)
with N = 2, and let ∆1 and ∆2 be its first and second order Melnikov
functions (4), respectively. In addition, assume that ∆1 = 0. Then, the
number of isolated zeros of ∆2 does not exceed 7. Moreover, there exist
linear differential systems (1) such that ∆2 has exactly 7 simple zeros.

Proof. In order to apply the Melnikov method of second order it is
necessary that the Melnikov function of first order ∆1 be identically
zero. So, we impose that the γ’s defined in (15) are identically zero. It
is enough to take

(18)
a11 = −(b21 + α11 + β21),
b01 = β01,
a01 = α01.

Again, we use polar coordinates (x, y) = (r cos θ, r sin θ) and take θ as
the new independent variable to transform system (1) into the differ-
ential equation

dr

dθ
= εF±

1 (θ, r) + ε2F±

2 (θ, r) + ε3R±

2 (θ, r, ε),

where

F±

1 (θ, r) = f±

11(θ) + rf±

12(θ),

F±

2 (θ, r) =
1

r
f±

21(θ) + f±

22(θ) + rf±

23(θ),
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with

f±

11(θ) = c±101 cos θ + s±101 sin θ,

f±

12(θ) = c±110 + c±112 cos(2θ) + s±112 sin(2θ),

f±

21(θ) = c±202 cos(2θ) + s±202 sin(2θ),

f±

22(θ) = c±211 cos θ + s±211 sin θ + c±213 cos(3θ) + s±213 sin(3θ),

f±

23(θ) = c±220 + c±222 cos(2θ) + c±224 cos(4θ) + s±222 sin(2θ) + s±224 sin(4θ),

and

c+101 = −α01, s+101 = −β01, c+110 =
1

2
(α11 + β21),

c+112 =
1

2
(2b21 + α11 + β21), s+112 =

1

2
(−a21 − b11),

c+202 = −α01β01, s
+
202 =

1

2

(
α2
01 − β2

01

)
,

c+211 =
1

2
(−2a02 + a21α01 − b11α01 + α11β01 + β01β21),

s+211 =
1

2
(a21β01 − 2b02 − b11β01 − α01α11 − α01β21),

c+213 =
1

2
(−a21α01 − b11α01 + 2b21β01 + α11β01 + β01β21),

s+213 =
1

2
(−a21β01 − b11β01 − 2b21α01 − α01α11 − α01β21),

c+220 =
1

4
(−2a12 − a21α11 − a21β21 + b11α11 + b11β21 − 2b22),

c+222 =
1

2
(−a12 − a21b21 + b11b21 + b11α11 + b11β21 + b22),

s+222 =
1

4

(
a221 − 2a22 − b211 − 2b12 + 2b21α11 + 2b21β21 + (α11 + β21)

2
)
,

c+224 =
1

4
(a21 + b11)(2b21 + α11 + β21),

s+224 =
1

8

(
−a221 − 2a21b11 − b211 + (2b21 + α11 + β21)

2
)
,

c−101 = −α01, s−101 = −β01, c−110 =
1

2
(−α11 − β21),

c−112 =
1

2
(β21 − α11), s−112 =

1

2
(2b21 + α11 + β21),

c−202 = −α01β01, s−202 =
1

2

(
α2
01 − β2

01

)
,

c−211 =
1

2
(α01α21 − α01β11 − 2α02 − α11β01 − β01β21),
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s−211 =
1

2
(α01(α11 + β21) + α21β01 − β01β11 − 2β02),

c−213 =
1

2
(β01(β21 − α11)− α01(α21 + β11)),

s−213 =
1

2
(α01(α11 − β21)− β01(α21 + β11)),

c−220 =
1

4
(α11α21 − α11β11 − 2α12 + α21β21 − β11β21 − 2β22),

c−222 =
1

2
(−α11β11 − α12 − α21β21 + β22),

s−222 =
1

4

(
α2
11 + α2

21 − 2α22 − β2
11 − 2β12 − β2

21

)
,

c−224 = −1

4
(α11 − β21)(α21 + β11),

s−224 =
1

8

(
α2
11 − 2α11β21 − α2

21 − 2α21β11 − β2
11 + β2

21

)
.

According to Section 2 the Melnikov function of second order ∆2 is
given by

∆2(r) = f2(r) + f ∗

2 (r),

where

f2(r) =
1

2π

∫ θ1(r)

0

[
DrF

−

1 (θ, r)

∫ θ

0

F1(t, r)dt+ F−

2 (θ, r)

]
dθ

+
1

2π

∫ θ2(r)

θ1(r)

[
DrF

+
1 (θ, r)

∫ θ

0

F1(t, r)dt+ F+
2 (θ, r)

]
dθ

+
1

2π

∫ 2π

θ2(r)

[
DrF

−

1 (θ, r)

∫ θ

0

F1(t, r)dt+ F−

2 (θ, r)

]
dθ.

and

f ∗

2 (r) =
(
F−

1 (θ1(r), r)− F+
1 (θ1(r), r)

)
θ′1(r)

∫ θ1(r)

0

F1(s, r)ds

+
(
F+
1 (θ2(r), r)− F−

1 (θ2(r), r)
)
θ′2(r)

∫ θ2(r)

0

F1(s, r)ds.

We recall that in our context θ2(r) = θ1(r) + π. So, we have θ′1(r) =
θ′2(r). For simplicity in the following formulas we denote θ1(r) by θ1.
After some computations we obtain

f2(r) = δ1r + δ2 cos θ1 + δ3 sin θ1 + δ4 cos
3 θ1 + δ5 sin

3 θ1,

and

f ∗

2 (r) =
r2 cos2 θ1

2 + 6r2 cos θ1 sin θ1

[
µ1r + µ2 cos θ1 + µ3 sin θ1

]
h(θ1),
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where

h(θ1) = η1 + η2 cos
2 θ1 + η3 cos θ1 sin θ1,

δ1 = −π

4

(
2a12 + 2b22 + a21α11 − b11α11 + 2α12 − α11α21

+ α11β11 + a21β21 − b11β21 − α21β21 + β11β21 + 2β22

)
,

δ2 = 2
(
− b02 + 2b21α01 + a21β01 − α21β01 + β02 − 2α01β21

)
,

δ3 = 2
(
a02 + b11α01 − α02 − 2b21β01 − 4α11β01 − α01β11 − 2β01β21

)
,

δ4 = α01

(
− 4b21 − 4α11

)
+ β01

(
− 2a21 − 2b11 + 2α21 + 2β11

)
,

δ5 =
(
4b21 + 4α11

)
β01 + α01

(
− 2a21 − 2b11 + 2α21 + 2β11

)
,

µ1 = π(α11 + β21), η1 = 2
(
β21 − b21

)
,

µ2 = −4β01, η2 = 4
(
α11 + b21

)
,

µ3 = 4α01, η3 = 2
(
α21 + β11 − a21 − b11

)
.

Again, using the identities (16) equation ∆2(r) = 0 is transformed
into the polynomial equation x3(1 + x4)p2(x) = 0, where

(19) p2(x) =
7∑

k=0

λkuk(x),

with

u0(x) = x5, u1(x) = x4, u2(x) = x6, u3(x) = x7,

u4(x) = 1, u5(x) = x2, u6(x) = x3 − x7, u7(x) = x+ 3x9,

and coefficients

λ0 =− 8π
(
a12 + b22 + α12 + (a21 − α21)(α11 + β21) + β22

)
,

λ1 =8
(
3β02 − 3b02 + 4b21α01 + 3a21β01 − 3α21β01 − 4α01β21

)
,

λ2 =24
(
a02 − a21α01 − α02 + α01α21 − 2β01(α11 + β21)

)
,

λ3 =8π(α11 + β21)
2,

λ4 =− 8
(
b02 + b11β01 − β02 − β01β11 + 2α01(α11 + β21)

)
,(20)

λ5 =8
(
a02 + b11α01 − α02 − α01β11 − 4β01(b21 + 2α11 + β21)

)
,

λ6 =4π
(
α11 + β21

)(
b21 + 2α11 + β21

)
,

λ7 =− π
(
2a12 + 2b22 + (a21 − b11 − α21 + β11)(α11 + β21)

+ 2(α12 + β22)
)
.
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Considering the ordered set of functions F = [u0, u1, . . . , u7] and
computing the Wronskians defined in (14) we obtain

W0(x) = x5, W1(x) = −x8,

W2(x) = −2x12, W3(x) = −12x16,

W4(x) = −10080x12, W5(x) = −2419200x9,

W6(x) = −174182400x6, W7(x) = −125411328000(1 + 189x8).

From Theorem 2, the maximum number of positive roots of poly-
nomial p2 is seven and the upper bound is reached. From (20), it is
clear that for any choice of λ’s it is possible to obtain the corresponding
perturbation. This concludes the proof of Proposition 5. �

Example 2. In what follows, we exhibit a concrete perturbation pre-
senting seven limit cycles for |ε| 6= 0 sufficiently small. Choosing

λ0 = 1, λ1 = −434699860

124987243
,

λ2 = − 18912094

124987243
, λ3 =

5527397195

874910701
,(21)

λ4 =
1929240

1582117
, λ5 = −613409686

124987243
,

λ6 =
11037105503

1749821402
, λ7 = − 6534

874910701
,

the polynomial (19) becomes

p2(x) = −(39204x2 + 1097712x+ 423361)

1749821402

7∏

k=1

(x− k).

So, p2(x) has seven positive roots at 1, 2, . . . , 7 (see Figure 4).

-

-

-

0.6

1 2

0.4

3 4

0.2

5 6

-0.6

7

-0.4

-0.2

Figure 4. Graph of p2(x).
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The system composed by equations (20) with the parameters given
by (21) has infinitely many solutions. One of these solutions is given
by a01 = a01, a11 = a11, a21 = a21, b01 = b01, b21 = b21, α01 = α01,
α11 = α11, β01 = β01, a02 = a02, a12 = a12, b02 = b02, where

a01 =
822816127288564767

√
5527397195π
1749821402

9860485382218537051
,

a11 =
1

2

√
5527397195

1749821402π
− 17688887

2
√
9671957909165767390π

,

a21 =
874936837√

9671957909165767390π
,

b01 = −
1014941851585915217

√
11054794390π
874910701

29581456146655611153
,

b21 =
17688887

2
√
9671957909165767390π

,

α01 =
822816127288564767

√
5527397195π
1749821402

9860485382218537051
,

α11 = −1

2

√
5527397195

1749821402π
,

β01 = −
1014941851585915217

√
11054794390π
874910701

29581456146655611153
,

a02 =
26106731320711553594487715355

103524530135484878237818593012
,

a12 =
874962973

6999285608π
,

b02 =
1918068234277679948089129635

17254088355914146372969765502
,

and all other coefficients equal to zero. Notice that conditions (18) have
been taken into account. So, for |ε| 6= 0 sufficiently small, system

ẋ =

{
y + (a01 + a11x+ a21y)ε+ (a02 + a12x)ε

2 if y ≥ x3,
y + (b01 + b21y)ε+ b02ε

2 if y ≤ x3,

ẏ =

{
−x+ (α01 + α11x)ε if y ≥ x3,
−x+ β01ε if y ≤ x3

has seven limit cycles.
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appear in R. Matemática Iberoamericana, (2017).

[16] S. Karlin and W. J. Studden, Tchebycheff systems: With applications in

analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience
Publishers John Wiley & Sons, New York-London-Sydney, 1966.

[17] L. Li, Three crossing limit cycles in planar piecewise linear systems with

saddle-focus type, Electron. J. Qual. Theory Differ. Equ., (2014), pp. No. 70,
14.

[18] J. Llibre, A. C. Mereu, and D. D. Novaes, Averaging theory for discon-

tinuous piecewise differential systems, J. Differential Equations, 258 (2015),
pp. 4007–4032.

[19] J. Llibre, D. D. Novaes, and C. A. B. Rodrigues, Averaging theory

at any order for computing limit cycles of discontinuous piecewise differential

systems with many zones, Phys. D, 353/354 (2017), pp. 1–10.
[20] J. Llibre, D. D. Novaes, and M. A. Teixeira, Higher order averaging the-

ory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014),
pp. 563–583.

[21] , Limit cycles bifurcating from the periodic orbits of a discontinuous piece-

wise linear differentiable center with two zones, Internat. J. Bifur. Chaos Appl.
Sci. Engrg., 25 (2015), pp. 1550144, 11.

[22] , Maximum number of limit cycles for certain piecewise linear dynamical

systems, Nonlinear Dynam., 82 (2015), pp. 1159–1175.
[23] , On the birth of limit cycles for non-smooth dynamical systems, Bull.

Sci. Math., 139 (2015), pp. 229–244.
[24] J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise

linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst.
Ser. B Appl. Algorithms, 19 (2012), pp. 325–335.

[25] J. Llibre, M. A. Teixeira, and J. Torregrosa, Lower bounds for the

maximum number of limit cycles of discontinuous piecewise linear differential

systems with a straight line of separation, Internat. J. Bifur. Chaos Appl. Sci.
Engrg., 23 (2013), pp. 1350066, 10.

[26] J. Llibre and X. Zhang, Limit cycles for discontinuous planar piecewise

linear differential systems. Preprint, 2016.
[27] O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of non-

smooth systems: a survey, Phys. D, 241 (2012), pp. 1826–1844.
[28] D. D. Novaes and E. Ponce, A simple solution to the Braga-Mello con-

jecture, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), pp. 1550009,
7.

[29] D. D. Novaes and J. Torregrosa, On extended Chebyshev systems with

positive accuracy, J. Math. Anal. Appl., 448 (2017), pp. 171–186.
[30] D. J. W. Simpson, Bifurcations in piecewise-smooth continuous systems,

vol. 70 of World Scientific Series on Nonlinear Science. Series A: Monographs
and Treatises, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.



MELNIKOV ANALYSIS IN NONSMOOTH DIFFERENTIAL SYSTEMS 23

[31] M. A. Teixeira, Perturbation theory for non-smooth systems, in Mathematics
of complexity and dynamical systems. Vols. 1–3, Springer, New York, 2012,
pp. 1325–1336.


	1. Introduction and statement of the main results
	2. Melnikov functions for a class of nonsmooth systems
	3. Bifurcation of limit cycles
	Acknowledgements
	References

