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DYNAMICS OF THE HIGGINS–SELKOV

AND SELKOV SYSTEMS

JOAN CARLES ARTÉS1, JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We describe the global dynamics in the Poincaré disc of the
Higgins–Selkov model

x
′ = k0 − k1xy

2
, y

′ = −k2y + k1xy
2
,

where k0, k1, k2 are positive parameters, and of the Selkov model

x
′ = −x+ ay + x

2
y, y

′ = b− ay − x
2
y,

where a, b are positive parameters.

1. Introduction and statement of the results

The Higgins–Selkov model of glycolysis is

(1) ẋ = k0 − k1xy
2, ẏ = k1xy

2 − k2y,

where the unknowns x and y are concentrations which are non-negative and
ki for i = 0, 1, 2 are the reaction positive constants, see [8] for the biological
details of this model.

We will describe the global dynamics of the differential system (1) in the
Poincaré disc for all positive values of k0, k1 and k2. For a definition of the
Poincaré disc, and of its separatrices and canonical regions see subsection 3.6
of the appendix. We denote by S (respectively R) the number of separatrices
(respectively canonical regions) of a phase portrait in the Poincaré disc.
Thus our first main result is:

Theorem 1. The Higgins–Selkov system (1), after a rescaling of its vari-
ables, can be written as

(2) x′ = 1− xy2, y′ = ay(xy − 1),

with a > 0. The global phase portraits of this system for a ∈ R is topologically
equivalent to the one of

• Figure 1(A) for a < 0, with S = 19, R = 6;
• Figure 1(B) for a = 0, with S = ∞;
• Figure 1(C) for a ∈ (0, 1], with S = 17, R = 4;
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Figure 1. Phase portraits of the Higgins–Selkov model. The
shaded areas correspond to the initial conditions of the orbits hav-
ing a finite final evolution, so these are the initial conditions with
biological meaning. In the phase portrait C the final behavior is
an equilibrium point, while in the phase portrait D is a stable limit
cycle. The phase portraits B and E are non-generic because they
only occur for a fixed value of the parameter. Note that the final
behaviors of the orbits of the phase portraits A and F take infinite
values.

• Figure 1(D) for a ∈ (1, a∗] where a∗ ∈ (1.23, 1.24), with S = 18,
R = 5;

• Figure 1(E) for a = a∗, with S = 16, R = 4;
• Figure 1(F) for a ∈ (a∗,∞), with S = 17, R = 4.

For system (2) the bifurcation values of the parameter a are a = 0, a = 1
and a = a∗. We note that the Higgins–Selkov system (1) only reflects some
biological meaning for some initial conditions when a ∈ (0, a∗), otherwise
the orbits that do not go to infinity have zero Lebesgue measure. In Figure
1(C) and (D) the initial conditions with some biological meaning are in the
shaded areas.

The proof of Theorem 1 modulo a conjecture is given in section 2. In
that section the conjecture is well stated. That conjecture is supported by
numerical computations.

The Selkov model of glycolysis is given by the differential system

(3) x′ = −x+ ay + x2y, y′ = b− ay − x2y,

with a and b positive parameters. The parameter b is named phosphofruc-
tokinase and the parameter a is called hexokinase which is the activant from
all the glycolytic cycle. For a detailed derivation of system (3) see [8]. Our
main aim is to study the global phase portraits on the Poincaré disc for the
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system (3) in function of its parameters. This is the content of the second
main result in the paper.

Theorem 2. The Selkov system (3), after a rescaling of the variables, can
be written as

(4) x′ = −x+ ay + x2y, y′ = 1− ay − x2y,

with a > 0. The global phase portraits of this system for a ∈ R is topologically
equivalent to the one of

• Figure 2(A) for a < −1, with S = 19, R = 6;
• Figure 2(B) for a = −1, with S = 15, R = 4;
• Figure 2(C) for a ∈ (−1, a1) where a1 ∈ (−0.036,−0.037), with
S = 17, R = 4;

• Figure 2(D) for a = a1, with S = 16, R = 4;
• Figure 2(E) for a ∈ (a1, 0), with S = 18, R = 5;
• Figure 2(F) for a = 0, with S = 17, R = 4;
• Figure 2(G) for a > 0, with S = 15, R = 2.

For system (2) the bifurcation values of the parameter a are a = −1, a = a1
and a = 0. We note that the Selkov system (4) only reflects biological

A B C

E F

G

D

Figure 2. Phase portraits of the Selkov model. Only the phase
portrait G, which corresponds to a > 0 for system (4), has biolog-
ical meaning. As before the shaded areas correspond to the initial
conditions of the orbits having a finite final evolution.
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meaning when a > 0, then the unique finite equilibrium point is a global
attractor.

The proof of Theorem 2 modulo a conjecture is given in section 3, where
the conjecture is well stated. Again that conjecture is supported by numer-
ical computations.

We must note that both conjectures are on the limit cycles of the Higgins–
Selkov and Selkov models. These conjectures state that in both systems the
number of limit cycles is at most one, and its existence depends on the values
of the parameters. This limit cycle appears from a Hopf bifurcation (this is
proved) and disappears in a graphic having a part at infinity (there is only
numerical evidence of this last fact). As usual to control the existence or
non–existence of limit cycles is one of the main problems of the qualitative
theory of the differential equations in dimension two.

2. Proof of Theorem 1

Since the parameters ki for i = 1, 2, 3 are positive, we can do the rescaling
of the variables

X =
k0k1
k22

x, Y =
k2
k0

y, T =
k20k1
k22

t,

and system (1) becomes system (2) where a = k32/(k
2
0k1) > 0, the prime

denotes derivative with respect to the new time T and we have written
x and y instead of X and Y . For completeness we shall study the phase
portraits of system (2) for all a ∈ R, but for their applications to biology
only a > 0 needs to be considered.

2.1. Finite singular points and the Hopf bifurcation. System (2) has
one finite singular point, namely the point (1, 1). See subsection 3.5 of the
appendix for the definitions of the different kind of singular points, and
Chapter 5 of [2], for the notions of weak focus and Lyapunov constant.
Computing the eigenvalues of the Jacobian matrix at this singular point we
get that they are (a− 1±

√
1− 6a+ a2)/2. The fixed point (1, 1) is

• a hyperbolic saddle if a < 0,
• a stable hyperbolic node if a ∈ (0, 3 − 2

√
2],

• a stable hyperbolic focus if a ∈ (3− 2
√
2, 1),

• a stable weak focus if a = 1 (the first non–zero Lyapunov constant
is −1/4),

• an unstable hyperbolic focus if a ∈ (1, 3 + 2
√
2), and

• an unstable hyperbolic node if a ∈ [3 + 2
√
2,∞).

It has a Hopf–bifurcation at a = 1 where the stability of the focus (1, 1)
changes, for more details on Hopf–bifurcations see [3]. For a > 1 sufficiently
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small a stable limit cycle comes from the Hopf bifurcation (see Figure 1(D))
that ends in a graphic with some part at infinity for some value of a = a∗ ∈
(1.23, 1.24) (see Figure 1(E)), this value has been obtained by numerical
integration of the differential system (2).

2.2. Infinite singular points. Now we shall study the infinite singularities
of system (2). In the local chart U1 system (2) becomes

u′ = au+ u2 − auv2 − uv3, v′ = v(u− v3).

Consider the case a 6= 0. The infinite singular points in the local chart U1 are
q0 = (0, 0) and q1 = (−a, 0). Computing the Jacobian matrix at the singular
point q0 we get that it is identically zero. Using the blow up technique (see
subsection 3.5 of the appendix) we find that it is formed by two hyperbolic
sectors and two parabolic ones, the straight line of infinity separates the
hyperbolic sectors and the parabolic ones as it is described in the figures
(C), (D), (E) and (F) of Figure 1. On the other hand, the eigenvalue of the
Jacobian matrix at the singular point q1 is a2 with multiplicity two, so it is
an unstable hyperbolic node.

If a = 0 then the straight lines y =constant are invariant and the curve
1 − xy2 = 0 if filled of singular points, consequently the phase portrait of
system (2) is given in Figure 1(B).

In the local chart U2 system (2) becomes

(5) u′ = −u2 − au3 + auv2 + v3, v′ = av(u2 + v2).

The origin of the local chart U2 is an infinite singular point which is semi–
hyperbolic (see subsection 3.5 of the appendix). When a 6= 0 we get that
the origin of U2 is a stable node if a < 0, and a topological saddle if a > 0,
see Figure 1.

2.3. On the periodic orbits. It is well known that if in the region bounded
by a periodic orbit there are finitely many singular points, then the sum of
the topological indices of these singular points is equal to one, see for instance
Proposition 6.26 of [2]. Therefore, since if a < 0 the unique finite singular
point is a saddle (topological index −1 see for instance Proposition 6.32 of
[2]), then the differential system (2) has no periodic orbits if a < 0.

Lemma 3. The Higgins–Selkov system (2) does not have periodic solutions
if a ≥ 3.

Proof. Note that
x′|x=0 = 1 > 0 and y′|y=0 = 0

and if there exists a periodic solution, since it must surround the singular
point (1, 1), we get that if the limit cycle exists must be contained in the
first quadrant {x > 0, y > 0}. The divergence of system (2) is

f(x, y) = −y2 − a+ 2axy.



6 J.C. ARTÉS, J. LLIBRE AND C. VALLS

We claim that the curve f(x, y)∩{x > 0, y > 0} is transversal for the flow of
system (2) if a > 3 and transversal except on the point (2/3, 1) (in which is
tangent) for a = 3. This claim together with the fact that the periodic orbit
must surround the singular point (1, 1) will imply that if the periodic orbit
exists must be contained in a simple connected region where the divergence
is positive (or positive except in the point (2/3, 1) where it is zero) and this
is not possible by the Bendixson criterium (see for instance Theorem 7.10
of [2]).

Now we prove the claim. Solving f(x, y) = 0 we get

x =
a+ y2

2ay
.

Take the curve

f(x, y) = x− a+ y2

2ay
.

and consider the function

Ta(x, y) =

(

∂f

∂x
x′ +

∂f

∂y
y′
)∣

∣

∣

∣

x= a+y2

2ay

:=
pa(y)

4ay
=

4ay − a2 − 3y4

4ay
.

Note that pa(y) is a fourth degree polynomial that we write as a4 + a3y +
a2y

2 + a1y
3 + a0y

4 with

a0 = −3, a1 = a2 = 0, a3 = 4a and a4 = −a2.

Computing

D4 = 256a30a
3
4 − 27a20a

4
3 − 192a20a3a

2
4a1 − 27a21a

2
4 − 6a0a

2
1a4a

2
3 + a22a

2
3a

2
1

− 4a0a
3
2a

2
3 + 18a2a4a

3
1a3 + 144a0a2a

2
4a

2
1 − 80a0a

2
2a4a1a3 + 18a0a2a

3
3a1

− 4a32a4a
2
1 − 4a31a

3
3 + 16a0a

4
2a4 − 128a20a

2
2a

2
4 + 144a20a2a4a

2
3

= 6912(a − 3)a4(a+ 3),

and

D3 = 16a20a4a2 − 18a20a
2
3 − 4a0a

3
2 + 14a0a3a1a2 − 6a0a4a

2
1 + a22a

2
1 − 3a3a

3
1

= −2592a2 < 0,

we get that D4 > 0 for a > 3 and D4 = 0 for a = 3. It follows from [7] that
in the first case (i.e when a > 3), the polynomial pa(y) has four complex
roots and so Ta(x, y) > 0 on {x > 0, y > 0}; and for a = 3 it has two
complex solutions and the double real solution y = 1, and so T3(x, y) ≥ 0,
and only is zero at the point (2/3, 1) of (x, y) ∈ {x > 0, y > 0}. This proves
the claim and concludes the proof of the lemma. �

In short we have proved the following result.

Proposition 4. The differential system (2) has no periodic solutions if
a ∈ (−∞, 0] ∪ [3,∞).
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We have numerical evidence of the following conjecture:

Conjecture 1. The differential system (2) has a unique periodic solution
when a ∈ (1, a∗) where a∗ ∈ (1.23, 1.24). Moreover this periodic solution is
a stable limit cycle which borns in a Hopf bifurcation at the singular point
(1, 1) when a = 1 and ends in a graphic with a part at infinity when a = a∗.

2.4. The phase portraits in the Poincaré disc. Gluing all the finite
and infinite information of system (2) together with the conjecture and the
fact that the straight line y = 0 is invariant, we get the six phase portraits of
Figure 1 described in the statement of Theorem 1. In particular, note that
the bifurcation values of a are 0, 1 and a∗, and that the biological meaning
of the Higgins–Selkov model only takes place for the values of the parameter
a ∈ (0, a∗], otherwise the orbits of system (2) that do not go to infinity have
zero Lebesgue measure. This concludes the proof of Theorem 1.

3. Proof of Theorem 2

First we compute the normal form given in Theorem 2. Since b 6= 0 doing
the rescaling of coordinates

x → bX, y → 1

b
Y, t → 1

b
τ,

system (3) becomes the differential system (4) with a/b2 replaced by a,
writing (x, y) instead of (X,Y ), and where the prime denotes derivative
with respect to the new time T .

Now we shall study the dynamics of the differential system (4).

3.1. Finite singular points and the Hopf bifurcation. System (4) has
a unique finite singular point (1, 1/(1 + a)) when a 6= −1. Computing the
eigenvalues of the Jacobian matrix at this point we get that it is

• a saddle if a ∈ (−∞,−1),
• an unstable hyperbolic node if a ∈ (−1, a2] with

a2 = −1

2
+

√
2− 1

2

√

1 + 4
√
2 = −0.3758..,

• an unstable hyperbolic focus if a ∈ (a2, 0),
• an unstable weak focus if a = 0 because the first Lyapunov constant
is 1/8,

• a stable hyperbolic focus if a ∈ (0, a3) with

a3 = −1

2
+

√
2 +

1

2

√

1 + 4
√
2 = 2.2042.., and

• a stable hyperbolic node if a ∈ [a3,∞).
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From the above it follows that system (4) has a Hopf bifurcation at a =
0 where the focus changes its kind of stability (see Figure 2(F)), from it
bifurcates a stable limit cycle for a < 0 sufficiently small, see for more
details on this Hopf bifurcation [3]. Doing numerical computations this
stable limit cycle ends in a graphic with a part at infinity for the value
a = a1 ∈ (−0.036,−0.037), see Figure 2(E).

3.2. Infinite singular points. In the local chart U1 system (4) becomes

u′ = −u− u2 + uv2 − auv2 + v3 − au2v2, v′ = −v(u− v2 + auv2).

The only infinite singular points in the local chart U1 are (0, 0) and (−1, 0).
Computing the eigenvalues of the Jacobian matrix at the origin we get that
this singularity is semi–hyperbolic. Using Theorem 2.19 in [2] we conclude
that it is a saddle. On the other hand, the eigenvalues of the Jacobian
matrix at the point (−1, 0) are 1, 1 and so (−1, 0) is an unstable hyperbolic
node.

In the local chart U2 system (4) becomes

(6) u′ = u2 + av2 + u3 − (1 + a)uv2 − uv3, v′ = v(u2 + av2 − v3).

The origin of the local chart U2 is a linearly zero singular point. We apply
the blow-up techniques to study it. We do a horizontal blow up. We consider
the new variables (u,w) where w = v/u. In these new variables (6) can be
written

u̇ = u2(1 + u+ aw2 + (a− 1)uw2 − u2w3),

ẇ = −uw(1 + aw2 − uw2).

We eliminate the common factor u by making a rescaling of time and we get

(7)
u̇ = u(1 + u+ aw2 + (a− 1)uw2 − u2w3),

v̇ = −w(1 + aw2 − uw2).

System (7) when a ≥ 0 has a unique singular point on u = 0 which is
(u,w) = (0, 0). Computing the eigenvalues of the Jacobian matrix of system
(7) at the origin we get that they are 1 and −1. Hence, the origin is a saddle.
Doing now the blowing down, and passing from (u,w) to (u, v) we get that
the origin of U2 is the union of two hyperbolic sectors (see Figure 2(G)).

On the other hand if a ≤ 0 system (7) has three singular points on u = 0,
which are (u,w) = (0, 0) and (u,w) = (0,±1/

√
−a). Computing the eigen-

values of the Jacobian matrix at the point (u,w) = (0, 0) we get that they
are 1,−1 and so it is a saddle. On the other hand computing the eigenvalues
of the Jacobian matrix at the singular points (u,w) = (0,±1/

√
−a) we get

that they are 2 and 0. Hence these two singularities are semi–hyperbolic.
Using Theorem 2.19 of [2] we get that

• (0,±1/
√
−a) are saddles if a < −1,

• (0, 1/
√
−a) is a saddle–node and (0,−1/

√
−a) a node if a = −1,
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• (0, 1/
√
−a) is a node and (0,−1/

√
−a) a saddle if a ∈ (−1, 0].

Doing now the blowing down, passing from (u,w) to (u, v) we get that the
origin of U2 is formed by

• two elliptic and two parabolic sectors (topological index 2) if a < −1,
see Figure 2(A);

• one elliptic, one hyperbolic and one parabolic sectors (topological
index 1) if a = −1, see Figure 2(B);

• two hyperbolic and one parabolic sectors (topological index 0) if
a ∈ (−1, 0], see Figure 2(C)–(F).

3.3. On the periodic orbits. Since if a < −1 the unique finite singular
point is a saddle (topological index −1), then the differential system (4) has
no periodic orbits if a < −1.

Lemma 5. The differential system (4) has no periodic solutions for a > a
where

a =
1

3



−1 +
3

√

25

2
− 3

√
69

2
+

3

√

1

2

(

25 + 3
√
69

)



 = 0.7548...

Proof. Note that for a > 0, ẏ|y=1/a = −x2/a < 0, ẏ|y=0 = 1 > 0 and
ẋ|x=0 = ay > 0 if y > 0. Hence, since the limit cycle must surrounds the
singular point (1, 1/(1 + a)) we conclude that if it exists, must be in the
strip R = {x > 0, y ∈ (0, 1/a)}. Now we compute the divergence of system
(4) and we get that in the region R it satisfies

div = −1− a− x2 + 2xy < −1− a− x2 +
2x

a
< 0 if and only if a > a,

because the two roots of the polynomial −1 − a − x2 + 2x/a are (1 ±√
1− a3 − a2)/a, and 1− a3 − a2 < 0 if and only if a > a.

Since the the divergence of system (4) is negative in the strip R for a > a,
and for a = a is negative except at the point (1/a, 2/a2), by the Bendixson
criterion, no periodic solutions can exist in R. This concludes the proof of
the lemma. �

In summary we have proved the following.

Proposition 6. The differential system (4) has no periodic solutions if
a ∈ (−∞,−1] ∪ [a,∞).

We have numerical evidence of the following conjecture:

Conjecture 2. The differential system (4) has a unique periodic solution
when a ∈ (a1, 0) where a1 ∈ (−0.036,−0.037). Moreover this periodic solu-
tion is a stable limit cycle which borns in a graphic with a part at infinity
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when a = a1 and ends in a Hopf bifurcation at the singular point (1, 1/(1+a))
when a = 0.

3.4. The phase portraits in the Poincaré disc. Taking into account all
the information on the finite and infinite singular points, the Hopf bifurca-
tion, and the Conjecture 2 we conclude that the global phase portraits for the
differential system (4) are the seven phase portraits of Figure 2 described in
the statement of Theorem 2. In particular, note that the bifurcation values
of a are −1, a1 and 0, and that the biological meaning of the Selkov model is
given when a > 0 by the phase portrait of Figure 2(G). Hence, when a > 0
the unique finite singular point is a global attractor. This concludes the
proof of Theorem 2.

Appendix: Basic results

In this appendix we summarize some basic notations and results which
are necessary for stating and proving the results presented in this paper.

3.5. Singular points of differential systems in plane. Let ẋ = P (x, y),
ẏ = Q(x, y) be a differential system in the plane R

2. An equilibrium point
or a singular point of this differential system is a point (x0, y0) ∈ R

2 such
that P (x0, y0) = Q(x0, y0) = 0.

A singular point (x0, y0) is hyperbolic if the eigenvalues of the Jacobian
matrix

(8)







∂P

∂x
(x0, y0)

∂P

∂y
(x0, y0)

∂Q

∂x
(x0, y0)

∂Q

∂y
(x0, y0)







have nonzero real part.

A singular point is semi-hyperbolic if one of the eigenvalues of the ma-
trix (8) is zero.

A singular point is nilpotent if the eigenvalues of the matrix (8) are both
zero but the matrix is not identically zero.

Finally, a singular point is linearly zero if the matrix (8) is identically
zero.

The local phase portraits of the hyperbolic, semi-hyperbolic and nilpotent
singular points are well-known see for instance the Theorems 2.15, 2.19 and
3.5 of [2]. While the study of the local phase portraits of the linearly zero
singular points is done using special change of variables called blow-ups, see
for instance [1].
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3.6. Poincaré compactification. Let P (x1, x2) andQ(x1, x2) be real poly-
nomials in the variables x1 and x2, and letX = (P,Q) be a polynomial vector
field of degree d in R

n, i.e. d the maximum of the degrees of the polynomials
P and Q. For all the details on the Poincaré compactification see Chapter
5 of [2].

The Poincaré sphere is S
2 = {y = (y1, y2, y3) ∈ R

3 :
∑3

i=1 y
2
i = 1}. We

denote by TyS
2 the tangent space at the point y of S

2. We identify the
tangent space T(0,0,1)S

2 with the plane R2 where it is defined the polynomial

vector field X. Consider the central projection f : T(0,0,1)S
2 −→ S

2 defined

as follows: if q ∈ T(0,0,1)S
2 then f(q) is formed by the two intersection points

of the straight line which connects the point q with the origin of coordinates
with the sphere S

2. Under the central projection f the infinity of the plane
R
2 ≡ T(0,0,1)S

2 goes to the equator S1 = {y ∈ S
2 : y3 = 0} of S2.

Through the central projection f we obtain two copies Df ◦ X of the
polynomial vector field X on the sphere S2, one in the southern hemisphere
and the other in the northern one. Let X ′ be the vector field on the sphere S2

minus its equator S1 formed by these two copies ofX. The vector fieldX ′ can
be extended from S

2\S1 to an analytic vector field p(X) on S
2 taking p(X) =

yd+1
3 X ′. Consider the projection π : R3 −→ R

2 defined by π(y1, y2, y3) =
(y1, y2). The projection π sends the closed northern hemisphere of S2 into
the Poincaré disc D. Thus the interior of D is diffeomorphic to R

2 and its
boundary S

1 corresponds to the infinity of R2, and π(p(X)) is the extension
of the polynomial vector field X from R

2 to the Poincaré disc D, called the
Poincaré compactification of the polynomial vector field X.

In order to have the explicit expression of the Poincaré compactification
p(X) for i = 1, 2, 3 we take local charts (Ui, Fi) and (Vi, Gi) on the sphere
S
2, defined by Ui = {y ∈ S

2 : yi > 0}, Vi = {y ∈ S
2 : yi < 0}, Fi : Ui → R

2

and Gi : Vi → R
2 where

Fi(y) = Gi(y) =
1

yi
(yj1 , yj2)

with 1 ≤ j1 < j2 ≤ 3 and jk 6= i for k = 1, 2. The expression of p(X) in the
local chart (U1, F1) is

zd2(−z1P +Q,−z2P ),

where P = P (1/z2, z1/z2) and Q = Q(1/z2, z1/z2), after a convenient rescal-
ing in the independent variable.

Similarly the expression of p(X) in the local chart (U2, F2) is

zd2(−z1Q+ P,−z2Q),

where P = P (z1/z2, 1/z2) and Q = Q(z1/z2, 1/z2). The expression of p(X)
in the chart (Vi, Gi) is the same than in the chart (Ui, Fi) multiplied by
(−1)d for i = 1, 2.
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An equilibrium point of π(p(X)) orX is called finite (respectively infinite)
if it belongs to the interior (respectively to the boundary) of the Poincaré
disc.

3.7. Topological equivalent polynomial vector fields. Two polyno-
mial vector fields X and Y on R

2 are topologically equivalent if there exists a
homeomorphism on the Poincaré disc D preserving the infinity S

1 and carry-
ing orbits of the vector field π(p(X)) into orbits of the vector field π(p(Y )),
either preserving or reversing the sense of all the orbits.

The separatrices of the Poincaré compactification π(p(X)) are the equi-
librium points, the limit cycles, the orbits of the boundary of the hyperbolic
sectors at a finite or infinite equilibrium point, and the orbits contained at
the infinity S

1. The set formed by all separatrices of π(p(X)) is denoted by
ΣX and it is closed (see Neumann [5]).

An open connected component of D \ΣX is a canonical region of π(p(X))
or X. The separatrix configuration of π(p(X)) or X is formed by the union
of one orbit chosen from each canonical region with ΣX , and it is denoted by
Σ′
X . We say that two separatrix configurations Σ′

X and Σ′
Y are topologically

equivalent if there exists a homeomorphism in D preserving the infinity
S
1 carrying trajectories of Σ′

X into trajectories of Σ′
Y , either preserving or

reversing the sense of all trajectories.

The topologically equivalence between two Poincaré compactified vector
fields has been characterized by Markus [4], Neumann [5] and Peixoto [6]
who proved that two Poincaré compactifications π(p(X)) and π(p(Y )) hav-
ing finitely many separatrices are topologically equivalent if and only if their
correspoinding separatrix configurations Σ′

X and Σ′
Y are topologically equiv-

alent.
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