DYNAMICS OF THE HIGGINS–SELKOV AND SELKOV SYSTEMS

JOAN CARLES ARTÉS¹, JAUME LLIBRE¹ AND CLÀUDIA VALLS²

ABSTRACT. We describe the global dynamics in the Poincaré disc of the Higgins–Selkov model

$$x' = k_0 - k_1 x y^2, \quad y' = -k_2 y + k_1 x y^2,$$

where k_0, k_1, k_2 are positive parameters, and of the Selkov model

$$x' = -x + ay + x^2y, \quad y' = b - ay - x^2y,$$

where a, b are positive parameters.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The Higgins–Selkov model of glycolysis is

(1)
$$\dot{x} = k_0 - k_1 x y^2, \quad \dot{y} = k_1 x y^2 - k_2 y$$

where the unknowns x and y are concentrations which are non-negative and k_i for i = 0, 1, 2 are the reaction positive constants, see [8] for the biological details of this model.

We will describe the global dynamics of the differential system (1) in the Poincaré disc for all positive values of k_0 , k_1 and k_2 . For a definition of the Poincaré disc, and of its separatrices and canonical regions see subsection 3.6 of the appendix. We denote by S (respectively R) the number of separatrices (respectively canonical regions) of a phase portrait in the Poincaré disc. Thus our first main result is:

Theorem 1. The Higgins–Selkov system (1), after a rescaling of its variables, can be written as

(2)
$$x' = 1 - xy^2, \quad y' = ay(xy - 1),$$

with a > 0. The global phase portraits of this system for $a \in \mathbb{R}$ is topologically equivalent to the one of

- Figure 1(A) for a < 0, with S = 19, R = 6;
- Figure 1(B) for a = 0, with $S = \infty$;
- Figure 1(C) for $a \in (0, 1]$, with S = 17, R = 4;

²⁰¹⁰ Mathematics Subject Classification. 34C05, 34C07, 34C08.

Key words and phrases. Selkov system, Higgins–Selkov system, phase portrait, Poincaré compactification.