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Abstract. In this paper we describe the global phase-portrait of the Hamil-
tonian system associated to a Pinchuk map in the Poincaré disc. In particular,
we prove that this phase portrait has 15 separatrices, five of them singular
points, and 7 canonical regions, six of them of type strip and one annular.

1. Introduction

As far as we know, the simplest class of non-injective polynomial local diffeomor-
phisms of R2 are the Pinchuk maps, constructed by Pinchuk in [17]. The existence
of these maps disproves the real Jacobian conjecture, that a polynomial local dif-
feomorphism of R2 is globally injective. One open problem is to know what exactly
fails in this conjecture.

One of the most known conditions for a local diffeomorphism to be a global one
is that it is proper. The asymptotic variety of a map of R2 is the set of points where
the map is not proper (i.e. points that are limits of the map under sequences tending
to infinity). In particular, a local diffeomorphism is a global diffeomorphism if and
only if this set is empty. Gwoździewicz in [11] and Campbell in [6, 7] calculated
the asymptotic variety of two Pinchuk maps in details. Our aim in this paper is to
do a similar work, i.e. to describe a Pinchuk map, but now from a different point
of view.

Let U ⊂ R
2 be an open connected set. Let F = (p, q) : U ⊂ R

2 → R
2 be a

C2 local diffeomorphism. Let HF (x, y) = (p(x, y)2 + q(x, y)2)/2 and consider the
Hamiltonian system

(1) ẋ = −(HF )y(x, y), ẏ = (HF )x(x, y),

where the dot denotes derivative with respect to the time t.

The singular points of system (1) are characterized by the following result, that
we shall prove in section 2.

Lemma 1. The singular points of system (1) are the zeros of F , each of them is a
center of system (1).

The following is a generalization of the characterization of global invertibility of
polynomial maps given by Sabatini in [18]. This version will appear in [5].

Date: August 20, 2016.
2010 Mathematics Subject Classification. Primary: 14R15; Secondary: 34C25.
Key words and phrases. Centers, global injectivity, real Jacobian conjecture.

1
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Theorem 2 ([5, 18]). Let z0 ∈ U such that F (z0) = (0, 0). The center z0 of system
(1) is global if and only if (i) F is globally injective and (ii) F (U) = R

2 or F (U) is
an open disc centered at the origin.

In case U = R
2 and F is a polynomial map, it follows that F (R2) = R

2 provided
F is injective, see [3]. Hence in this case z0 is a global center of (1) if and only if
F is globally injective. See an application of this result in [4].

Thus from Theorem 2 to understand why a local injective polynomial map F
is not globally injective is equivalent to knowing that the center of the differential
system (1) is not global.

Since the phase portrait on the Poincaré sphere of a Hamiltonian polynomial
vector field having a global center is simple, i.e. at the infinite either it does not
have singular points, or the infinite singular points are formed by two degenerate
hyperbolic sectors (for Hamiltonian vector fields, the infinity contains only isolated
singular points), it is interesting to know how complex can be the phase portrait of
a non-global center of a Hamiltonian system (1).

In this paper we provide the qualitative global phase portrait of the Hamilton-
ian system (1) when F is given by the Pinchuk map considered in [6, 7], after a
translation in the target in order to have only a point z0 such that F (z0) = (0, 0).
More precisely, we prove the following result.

Theorem 3. Let F = (p, q) : R2 → R
2, where (p, q+208) : R2 → R

2 is the Pinchuk
map considered in [6, 7] (see the definition in section 2). Then the phase portrait
of the Hamiltonian system (1) in the Poincaré disc is topologically equivalent to the
phase portrait given in Fig. 1.

To prove Theorem 3 we first study the infinite singular points of system (1)
in section 3. These infinite singular points are very degenerate, and we apply
homogeneous and quasi-homogeneous blow ups to study them. In section 4 we
complete the proof of Theorem 3 by proving that the separatrix configuration of
system (1) is qualitatively the one presented in Fig. 1.

We think that a good understanding of what fails in the real Jacobian conjecture
is important to investigate a related problem, the Jacobian conjecture in R

2, that a
polynomial local diffeomorphism whose Jacobian determinant is constant is globally
injective. This conjecture remains unsolved until now. For the Jacobian conjecture
we address the reader to [2] or [9].

2. Injectivity, centers and a Pinchuk map

We begin with the proof of Lemma 1.

Proof of Lemma 1. Let z0 be a singular point of the Hamiltonian system (1). We
have

(

−py(z0) −qy(z0)
px(z0) qx(z0)

)(

p(z0)
q(z0)

)

=

(

0
0

)

,

which is true if and only in F (z0) = (p, q)(z0) = (0, 0) because the Jacobian deter-
minant of F is nowhere zero.
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Figure 1. The qualitative global phase portrait of system (1) in
the Poincaré disc.

The point z0 is a center of the Hamiltonian system (1) because it is an isolated
minimum of HF . �

Now we select the map F that we are going to work in this paper. Let t = xy−1,
h = t(xt+1) and f = (xt+1)2(t2+y). A Pinchuk map is a non-injective polynomial
map with nowhere zero Jacobian determinant of the form (P,Q) : R2 → R

2 such
that P = h + f and Q = −t2 − 6th(h + 1) − u(h, f), where u is chosen so that

detD(P,Q)(x, y) = t2+(t+ f(13 + 15h))2+ f2. The following is the Pinchuk map
studied by Campbell in [7]:

p = h+ f,

q = −t2 − 6th(h+ 1)− 170fh− 91h2 − 195fh2 − 69h3 − 75fh3 −
75h4

4
.

According to [7], the points (−1,−163/4) and (0, 0) ∈ R
2 have no inverse image

under (p, q), all the other points of the curve

γ(s) =

(

s2 − 1,−75s5 +
345s4

4
− 29s3 +

117s2

2
−

163

4

)

, s ∈ R,

which is a parametrization of the asymptotic variety of (p, q), have exactly one
inverse image under this map, and the points of R2 \ γ(R) have two inverse images.
Hence, in particular, the point (0, 208) has precisely one inverse image under (p, q).

We consider the map F = (p, q) : R2 → R
2 given by the translation

(2) p(x, y) = p(x, y), q(x, y) = q(x, y)− 208.
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Observe that F is a Pinchuk map according to our above-definition. Moreover,
now there exists exactly one point z0 ∈ R

2 such that F (z0) = (0, 0). From Lemma
1 the point z0 is the only finite singular point of system (1), corresponding to a
non-global center of this system according to Theorem 2. Further, the curve

(3) β(s) = γ(s)− (0, 208) =

(

s2 − 1,−75s5 +
345s4

4
− 29s3 +

117s2

2
−

995

4

)

,

s ∈ R, is the asymptotic variety of F , whose points have exactly one inverse image
over F , but the points (−1,−995/4) and (0, 208), which have none.

From now on, we restrict our attention to the specific Pinchuk map (2).

We first calculate the coordinates of the point z0. Observe that xt+1 = x2y−x+1
is a factor of p. If this factor annihilates, then h = 0 and q = −t2 − 208 < 0.

The other factor of p is

g(x, y) = −x+ (1− 2x+ 3x2)y − x2(−2 + 3x)y2 + x4y3.

We observe that g(0, y) = y and q(0, y) = 50y − 799/4 do not annihilate at the
same time, thus the first coordinate of the point z0 is not 0. Moreover, since the
leading coefficient of q(x, y) as a polynomial in y is −75x15, it follows that the first
coordinate of z0 will be a point where the resultant in y between g(x, y) and q(x, y)
is zero. This resultant is the cubic c(x) = 31008391− 11757152x− 155580672x2 +
2239078400x3 multiplied by −x36/64. The discriminant of c(x) is negative, so it
has only one real root, which will be the first coordinate of the point z0.

Repeating a similar reasoning now looking g and q as polynomials in x, we
calculate their resultant and obtain that its zero is the only real root of the cubic
c(y) = 1789023641600 + 100675956992y+ 26252413280y2 + 1506138481y3, which
will be the second coordinate of the point z0.

Hence z0 = (−0, 22568337...,−17, 491214...) approximately. Since z0 is a center,
the only finite singular point of system (1), near z0 the phase portrait of this system
is simple. Indeed, since z0 is the minimum point of HF , it follows that the gradient
of HF points outward of each closed orbit of the center, and so each closed orbit of
the center rotates in counterclockwise around z0.

In the following section we shall investigate the infinite of system (1).

3. The infinite of system (1)

In this section we will use results and notations on the Poincaré compactification
of the polynomial vector fields of R2. For details on this technique we refer the
reader to [8, Chapter 5] or [10].

We call a singular point of a vector field linearly zero when the linear part of the
vector field at this point is identically zero.

We begin by proving a general fact about the infinite singular points of Hamil-
tonian systems of the form (1). Writing H = H0 +H1 + · · · +Hd+1, where Hi is
the homogeneous part of degree i of the polynomial H , it is simple to conclude that
the infinite singular points (u, 0) of system (1) in the local charts U1 and U2 are
the points satisfying Hd+1(1, u) = 0 and Hd+1(u, 1) = 0, respectively. Let (u, 0) be
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an infinite singular point of system (1) and assume it is in the chart U1. The linear
part of the vector field at (u, 0) is

(

(d+ 1)(Hd+1)y(1, u) dHd(1, u)

0 (Hd+1)y(1, u)

)

.

Assuming m = deg p ≥ deg q, we have d = 2m − 1 and Hd = pmpm−1 + qmqm−1

and Hd+1 = p2m+q2m. Since Hd+1(1, u) = 0, it follows that pm(1, u) = qm(1, u) = 0,
and hence (Hd+1)y(1, u) = Hd(1, u) = 0. Therefore, (u, 0) is a linearly zero singular
point. This proves the following result.

Lemma 4. The infinite singular points of the Hamiltonian system (1) are linearly
zero.

Now we return to the Pinchuk map F defined by (2). Observe that the highest
homogeneous part ofHF (x, y) is 5625x

30y20/2. Thus the origins of the charts U1, V1
and U2, V2 are the infinite singular points of the Hamiltonian system (1), each of
them linearly zero from Lemma 4.

We will use the quasi-homogeneous directional blow up technique to desingularize
each of these infinite singular points. An exposition about blow-ups can be found
in [1], see also [8, Chapter 3].

We now recall the directional blow up transformations.

By the quasi-homogeneous blow up in the positive (resp. negative) x-direction
with weights α and β, or simply (α, β)-blow up in the positive (resp. negative)
x-direction, we mean the transformation which carries the variables (x1, y1) to the
variables (x2, y2) according to the formulas

(x1, y1) = (xα2 , x
β
2y2), (x1, y1) = (−xα2 , x

β
2 y2),

respectively. Similarly, by the quasi-homogeneous blow up in the positive (resp.
negative) y-direction with weights α and β, or simply (α, β)-blow up in the positive
(resp. negative) y-direction, we mean the transformations

(x1, y1) = (x2y
α
2 , y

β
2 ), (x1, y1) = (x2y

α
2 ,−y

β
2 ),

respectively.

Clearly if α (resp. β) is odd, then the blow up in the positive x-direction (respec.
y-direction) provides the information of the respectively negative blow ups. Also, if
β is odd, the x-directional blow ups swap the second and third quadrants, while the
y-directional blow ups swap the third and the fourth quadrants if α is odd. After
the (α, β)-blow up in the x-direction, a system ẋ1 = P (x1, y1), ẏ1 = Q(x1, y1) is
transformed into

ẋ2 =
±P

αxα−1
2

, ẏ2 =
αxα−1

2 Q∓ βxβ−1
2 y2P

αxα+β−1
2

,

with P = P (±xα2 , x
β
2y2) and Q = Q(±xα2 , x

β
2y2), in the positive and negative di-

rections according to ±. Similarly, the (α, β)-blow up in the y-direction transforms
ẋ1 = P (x1, y1), ẏ1 = Q(x1, y1) into

ẋ2 =
βyβ−1

2 P ∓ αx2y
α−1
2 Q

βyα+β−1
2

, ẏ2 =
±Q

βyβ−1
2

,
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with P = P (x2y
α
2 ,±y

β
2 ) and Q = Q(x2y

α
2 ,±y

β
2 ), in the positive and in the negative

directions according to ±.

After the blow up in the x-direction (resp. y-direction) we cancel a common
appearing factor xk2 (yk2 ) for a suitable k. So if k is odd, the direction of the orbits
are reversed in x2 < 0 (y2 < 0).

The weights α and β are chosen analyzing the Newton polygon of (P,Q), see the
construction in [1].

The application of (α, β)-blow ups with αβ 6= 1 usually reduces the number of
blow ups necessary for studying the local phase portrait of a linearly zero singular
point.

To make the exposition clearer, we shall apply the most part of the blow ups in
the x-direction. So, sometimes we will first apply a xy-change, (x1, y1) 7→ (y1, x1) =
(x2, y2), before making the blow-up.

In the next two subsections we will desingularize the origin of the charts U1 and
U2, respectively. We will denote the coordinates of the system in the step i of the
algorithm as the variables (wi, zi), so that after either a wz-change, a translation
or a blow up, the new obtained system will be written in the variables (wi+1, zi+1).
In each step, we will denote the system ẇi = Pi(wi, zi), żi = Qi(wi, zi) simply as
(Pi, Qi).

Since the Hamiltonian system (1) with the polynomials p and q given by (2) has
degree 49, it follows that for the calculations in each step of the algorithm we have
to deal with polynomials of very high degree. So we persuade these calculations
with the algebraic manipulator Mathematica. We do not show in each step the
whole expressions of the systems (Pi, Qi) because this would be impractical.

3.1. The origin of the chart U1. We write the compactification of system (1)
in the chart U1 in the variables (w0, z0), as (P0, Q0). From Lemma 4, the singular
point (0, 0) is linearly zero.

We first apply a wz-change and write the new system in the variables (w1, z1)
as (P1, Q1).

The Newton polygon of system (P1, Q1) has only one compact edge contained
in the straight line x + 2y = 38. We apply (1, 2)-blow ups in the positive w-
direction and in the positive and negative z-directions obtaining systems (P2, Q2)
and (P±

2 , Q
±

2 ), in the variables (w2, z2) and (w±

2 , z
±

2 ), after canceling the common
factors w38

2 and (w±

2 )
38, respectively. The first terms of these systems have the

following expressions:

P2 = w2

(

−56250+
1125

2
(447w2 + 1900z2) + · · ·

)

,

Q2 = 28125−
1125

4
(387w2 + 2000z2) +

75

4
(1967w2

2 + 24138w2z2 + 57000z22) + · · · ,
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and

P±

2 = w±

2

(

∓
28125

2
+ 281250(w±

2 )
2 + · · ·

)

,

Q±

2 = z±2

(

±
140625

2
− 1350000(w±

2 )
2 + · · ·

)

.

The only singular point of (P2, Q2) over the line w2 = 0 is the linearly zero
singular point (0, 1). The origin of the systems (P±

2 , Q
±

2 ) are saddles as depicted
in the planes w+

2 z
+
2 and w−

2 z
−

2 of Fig. 2.

wz-change

wz-change

translation
α = 1, β = 2

α = 1, β = 2

α = β = 1
α = β = 1

z-dir

w-dir
w-dir

w-dir

odd
odd

even
even

w0

z0

w1

z1

w2

z2

w3

z3

w4

z4

w5

z5

w6

z6

w
−
2

z
−
2

w
+
2

z
+
2

Figure 2. The sequence of blow downs in the study of the origin
of the chart U1.

The reader can follow a schema of each step of the calculations in Fig. 2. We just
need to analyze the origin of the systems (P±

2 , Q
±

2 ), because the other singularities
over the lines z±2 = 0 will correspond to the singularity (0, 1) of (P2, Q2).

We now analyze this linearly zero singularity. We first do a translation bringing
this point to the origin, obtaining the new system (P3, Q3) in the variables (w3, z3).
We also apply a wz-change obtaining the system (P4, Q4) in the variables (w4, z4).
The Newton polygon of this system has two compact edges. We choose the one
contained in the straight line x+y = 11. This compact edge has the point of negative
abscissa (−1, 12), thus concerning (1, 1)-blow ups, it follows from [1, Proposition
3.2] that w4 is not a characteristic direction, and so we only need to apply a w-
directional (1, 1)-blow up, obtaining the system (P5, Q5) in the variables (w5, z5),
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after canceling the common factor w11
5 . The first terms of (P5, Q5) are:

(4)

P5 = w5

(1

4
(w5 + z5)(w5 + 2z5)

(

442125w5
5z5 + 824250w4

5z
2
5 + 699990w3

5z
3
5

+ 320532w2
5z

4
5 + 215904w5z

5
5 + 112500w6

5 + 217160z65
)

+ · · ·
)

,

Q5 = z5

(1

4
(w5 + z5)(w5 + 2z5)

(

442125w5
5z5 + 824250w4

5z
2
5 + 699990w3

5z
3
5

+ 320532w2
5z

4
5 + 215904w5z

5
5 + 112500w6

5 + 217160z65
)

+ · · ·
)

.

Over the line w5 = 0, the singular points of (P5, Q5) are (0, 0) and two points of
the form (0, z5), with z5 the two real solutions of

0 = z45 + 70726z35 + 252941z25 + 290380z5 + 108580.

The discriminant of this quartic equation is negative, thus it has two real solutions.
Those are approximately z5 = −70722.424... and z5 = −1.6611121.... The singu-
lar point (0, 0) is linearly zero and the other two singular points are saddles, as
represented in the w5z5-plane of Fig. 2.

Now we study the linearly zero point (0, 0) of (P5, Q5). It is clear from (4) that
the characteristic equation of (P5, Q5) is identically zero, so (0, 0) is a dicritical
singular point. We apply (1, 1)-blow ups in both the w- and z-directions obtaining
systems (P6, Q6) and (P y

6 , Q
y
6) in the variables (w6, z6) and (wy

6 , z
y
6 ), after canceling

the factors w9
6 and (zy6 )

9, respectively. System (P y
6 , Q

y
6) does not have (0, 0) as a

singular point, so we just need to consider system (P6, Q6) over the line w6 = 0.
We have

P6(0, z6) =
1

4
(z6 + 1)(2z6 + 1)

(

217160z66 + 215904z56 + 320532z46 + 699990z36

+ 824250z26 + 442125z6 + 112500
)

,

Q6(0, z6) =
1

4
z26(z6 + 1)(2z6 + 1)

(

290380z66 + 260416z56 + 421348z46 + 904140z36

+ 1032225z26 + 542250z6 + 135000
)

.

By using Sturm’s theorem (see for instance [12]; in the software Mathematica,
the Sturm theorem is programed by the instruction CountRoots) we see that the
polynomial of degree 6 multiplying (z6+1)(2z6+1)/4 in P6(0, z6) has no real roots,
so the only singular points are (0,−1/2) and (0,−1). The first one is a weak focus
and the second one is a saddle, as depicted in the plane w6z6 of Fig. 2. Since the
origin of (P5, Q5) is dicritical, it follows that each orbit crossing the line w6 = 0
will correspond to two orbits tending to (0, 0) in positive or negative directions.

We now begin the process of blowing down.

It is simple to conclude that the phase portrait of the system (P5, Q5) close to the
origin is qualitatively the one depicted in (a) of Fig. 3. Consequently, by considering
also the information close to the other two singular points in the line w5 = 0 (see
the plane w5z5 of Fig. 2), we can understand the behavior near the origin of system
(P4, Q4). We then apply a wz-change and conclude that the behavior of system
(P3, Q3) near the origin is the one presented qualitatively in (b) of Fig. 3.

By translating (0, 0) to (0, 1) and by using the information provided by the
saddles of planes w±

2 z
±

2 , we make the blow downs with α = 1 and β = 2, obtaining
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z5

z5

(a) Origin of (P5, Q5).

w3

z3

(b) Origin of (P3, Q3).

Figure 3. The origins of systems (P5, Q5) and (P3, Q3).

the origin of system (P1, Q1). We then finally apply a wz-change and conclude that
the origin of system (P0, Q0) is qualitatively as drawn in Fig. 4.

w0

z0

Figure 4. The origin of the chart U1.

3.2. The origin of chart U2. As in the calculations made above, we write the
compactified vector field in the chart U2 as (ẇ0, ż0) = (P0, Q0). The Newton
polygon of (P0, Q0) has two compact edges: one of them contained in the straight
line 3x + 2y = 87. We apply a (3, 2)-blow up in the w-direction, obtaining the
system (ẇ1, ż1) = (P1, Q1) after canceling the factor w87

1 . The first terms of P1 and
Q1 are:

P1 = w1

(

−46875+ 11250z21(80w1 − 47z1) + · · ·
)

,

Q1 = z1
(

9375 + 56250z21(2z1 − 3w1) + · · ·
)

.

The polynomials P1 and Q1 have degree 61.

It is clear that at (0, 0) we have a saddle. The other singular point of (P1, Q1)
in the line w1 = 0 is (0,−1), and it is a linearly zero point. See the w1z1-plane of
Fig. 5. The reader can follow the steps of the calculations in the schema shown
in this figure. We just warn that, differently of Fig. 2, we already draw the final
phase portrait of each step, including the behavior close to the linearly zero points
(information that we will know only after persuading all the blow ups).

We also apply (3, 2)-blow ups in the positive and negative z-directions, obtaining

the systems ẇ±

1 = P±

1 , ˙z±1 = Q±

1 , respectively, with linearly zero singular points at
(w±

1 , z
±

1 ) = (0, 0). The polynomials P±

1 and Q±

1 have degree 30 and Q±

1 is a factor
of z±1 .
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wz-change

α = β = 1

α = 3, β = 2

α = 3, β = 2

α = 1, β = 2

α = β = 1

α = β = 1

α = β = 1

α = β = 1

α = β = 1

z-dir

z-dir

z-dir

z-dir

w-dir

w-dir

w-dir

w-dir

w-dir

odd

odd

odd

odd

odd

odd

odd

odd

odd

w0

z0

w1

z1

w2

z2

w3

z3

w4

z4

w5

z5

w6

z6

w
y

6

z
y

6

w7

z7

w8

z8

w
y

8

z
y

8

w9

z9

w10

z10

w
−

1

z
−
1

w
+
1

z
+

1

w
±
2

z
±
2

Figure 5. The sequence of blow downs in the study of the origin
of the chart U2.

We do not need to analyze the other singular points over the lines z±1 = 0, as
the information provided by them is already contained in the w-directional blow
up. We desingularize these points applying (1, 1)-blow ups in the w-direction. Here
we do not need to apply blow ups in the z-directions because the characteristic
equations of the systems are

0 = z±1
(

−4500(w±

1 )
5z±1 + 1650(w±

1 )
4(z±1 )2 − 7800(w±

1 )
3(z±1 )

3

+3025(w±

1 )
2(z±1 )

4 − 500w±

1 (z
±

1 )
5 + 5625(w±

1 )
6 + 2501(z±1 )

6
)

,

and so w±

1 = 0 are not characteristic directions. We obtain the systems (P±

2 , Q
±

2 )
after canceling a factor (w±

2 )
5. The polynomials P±

2 and Q±

2 have degree 45, and
up to order 2 they have the same expressions:

P±

2 = w±

2

(

−
28125

2
+ 10125z±2 + · · ·

)

,

Q±

2 = z±2
(

5625− 4500z±2 + · · ·
)

.
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Thus at (0, 0) the systems have a saddle, as depicted in the planes w±

2 z
±

2 of Fig. 5.
Moreover, any other singularity of the form (0, z±2 ) must satisfy

2501(z±2 )
6 − 500(z±2 )

5 + 3025(z±2 )
4 − 7800(z±2 )

3 + 1650(z±2 )
2 − 4500z±2 + 5625 = 0.

By using Sturm’s theorem, we conclude that this equation has no real solution.

Now we desingularize the point (0,−1) of system (P1, Q1). First we apply a
translation to bring this point to the origin, obtaining the system (P2, Q2) in the
variables (w2, z2). We also apply a wz-change obtaining the system (P3, Q3) in the
variables (w3, z3). The Newton polygon of this system has only one compact edge
contained in the line x+ 2y = 11, and this edge has points of negative abscissa, so
concerning (1, 2)-blow ups we just need to apply them in the w-direction, according
to [1, Proposition 3.2]. Hence we apply a (1, 2)-blow up in the positive w-direction,
obtaining the system (P4, Q4) in the variables (w4, z4), after canceling a factor of
w11

4 . These polynomials have degree 90, and their first terms are:

P4 = w4

(

−4982259375+
996451875

4
(260w4 + z4) + · · ·

)

,

Q4 = z4 (3985807500− 110716875(639w4 + 2z4) + · · · ) .

Clearly (0, 0) is a singularity corresponding to a saddle. The other singular point
in the line w4 = 0 is (0, ξ), where ξ is the only real root of the cubic

c(x) = 4x3 + 216x2 + 6075x− 218700,

which is approximately ξ = 18.8848..... This cubic has only one real root because
its discriminant is negative. A calculation shows that (0, ξ) is linearly zero. See the
plane w4z4 in Fig. 5.

Now we apply a translation to bring the point (0, ξ) to the origin, obtaining
system (P5, Q5) written in the variables (w5, z5). Since ξ is not a rational number,
we do this translation with a parameter x, and thus P5 and Q5 are polynomials in
w5, z5 and x. We simplify these polynomials substituting them by the remainder
of the division of each of them by c(x), obtaining so polynomials of degree 2 in x,
and hence when we substitute x by ξ, we obtain the same expressions. We keep
the notation (P5, Q5).

The Newton polygon of this system has just one compact edge contained in the
line x+ y = 1. So the blow ups here will be homogeneous ones. The characteristic
equation of system (P5, Q5) is a multiple of

0 = w5

(

729
(

23090824x2 + 532204875x− 18375684300
)

w2
5

−216
(

149x2 + 1828125x− 32221800
)

w5z5 − 4
(

404x2 + 8325x− 54675
)

z25
)

,

with x = ξ. It would thus be enough to apply a (1, 1)-blow up in the z-direction
and to study the singularities of the new system in z6 = 0 (this could evidently
also be concluded by observing that the compact edge of the Newton polygon of
(P5, Q5) has a point of negative ordinate). We prefer though to apply (1, 1)-blow
ups in the w and z-directions and to study the singularities of the new systems
either in the line w6 = 0 and in the origin, respectively. The reason why we do
this is that the singularities other than the origin are linearly zero and we have to
apply new blow ups after persuading a translation. The matter here is that the
blow up in the z-direction produces a vector field of degree 158, while the blow up
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in the w-direction produces a vector field of degree 109. Thus it is simpler to do
a translation and after to apply the polynomial remainder in the vector field with
smaller degree.

Then after applying (1, 1)-blow ups in either the positive w- and z-directions,
we obtain the systems (P6, Q6) and (P y

6 , Q
y
6) in the variables (w6, z6) and (wy

6 , z
y
6 ),

after canceling factors w6 and zy6 , respectively. The first terms of these systems are:

P6 = w6

(

59049

4

(

149x2 + 1828125x− 32221800
)

+ · · ·

)

,

Q6 = −
4782969

16

(

23090824x2 + 532204875x− 18375684300
)

+
177147

64

(

5928191012x2 − 9644385686625x+ 179165168144100
)

w6

+
177147

2

(

149x2 + 1828125x− 32221800
)

z6 + · · · ,

with x = ξ and

P y
6 = wy

6

(

−
6561

4
(404x2 + 8325x− 54675) + · · ·

)

,

Qy
6 = zy6

(

2187(404x2 + 8325x− 54675) + · · ·
)

,

with x = ξ.

The origin of system (P y
6 , Q

y
6) is a saddle (see the plane wy

6z
y
6 in Fig 5). On the

other hand, the singularities of (P6, Q6) over the line w6 = 0 are the points (0, z6),
with z6 the real solutions of

(5)
0 = 4

(

404x2 + 8325x− 54675
)

z26 + 216
(

149x2 + 1828125x− 32221800
)

z6

− 729
(

23090824x2 + 532204875x− 18375684300
)

,

with x = ξ. The discriminant of this quadratic equation is a polynomial in x whose
division by c(x) has remainder equal to 0. This means that the only real solution
of (5) is r1 = −b/(2a), where a and b are the coefficients of z26 and z6 in (5),
respectively. Substituting x by ξ after applying the polynomial remainder again we
have

r1 =
3
(

2380ξ2 + 21ξ − 334440
)

5989

The point (0, r1) is linearly zero, so we translate it to the origin obtaining the system
(P7, Q7) in the variables (w7, z7). We again persuade this translation considering
r1 = r1(x) as a polynomial of x. Again P7 and Q7 will be polynomials in w7, z7
and x. As before we substitute these polynomials by the remainder of the division
of them by c(x), obtaining polynomials of degree 2 in x. We keep the notation P7

and Q7 for them.

The Newton polygon of this system has only one compact edge contained in the
straight line x+ y = 1. The characteristic equation of this system has w7 = 0 as a
solution.

As above, we apply (1, 1)-blow ups in either the positive w- and z-directions,
obtaining the systems (P8, Q8) and (P y

8 , Q
y
8) in the variables (w8, z8) and (wy

8 , z
y
8 ),

respectively. We then study the origin of (P y
8 , Q

y
8) and the singularities of (P8, Q8)
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over the line w8 = 0. The reason is again computational, as the degree of (P y
8 , Q

y
8)

is 196 and the degree of (P8, Q8) is 128. The first terms of these systems are:

P8 = w8

(

−
6561

(

610023097091x2− 7154910819000x− 72219849901200
)

95824
+ · · ·

)

,

Q8 =
59049

4591119488

(

866106385697199684752x2− 63678825997496319079125x

+ 894244583851567110026100
)

+ · · · ,

with x = ξ, and

P y
8 = w8

(

−
2187

2
(404x2 + 8325x− 54675) + · · ·

)

,

Qy
8 = z8

(

6561

4
(404x2 + 8325x− 54675) + · · ·

)

,

with x = ξ.

System (P y
8 , Q

y
8) has a saddle at the origin (see the plane wy

8z
y
8 in Fig 5), while

the singular points of (P8, Q8) over the line w8 = 0 are the points (0, z8), with z8
the real roots of

0 = 2295559744
(

404x2 + 8325x− 54675
)

z28 − 574944
(

610023097091x2

− 7154910819000x− 72219849901200
)

z8 + 27
(

866106385697199684752x2

− 63678825997496319079125x+ 894244583851567110026100
)

,

with x = ξ. The discriminant of this equation is a polynomial in x whose division
by c(x) has remainder 0. Thus the only real solution is r2 = −b/(2a), where a and
b are the coefficients of z28 and z8 of the equation, respectively. After applying the
polynomial remainder, we substitute x by ξ obtaining

r2 =
−38570325688ξ2− 1361034154573ξ+ 41691943772820

430417452
.

The point (0, r2) is linearly zero, so we translate it to the origin obtaining the
system (P9, Q9) in the variables (w9, z9). As before, we make this translation with
the parameter x, so that P9 and Q9 are polynomials in x. Keeping the notation we
substitute these polynomials by the remainder of the division of them by c(x).

As before the Newton polygon of this system has only one compact edge con-
tained in the straight line x + y = 1. Moreover, the characteristic equation does
not have z9 = 0 as a solution. Here we just apply a (1, 1)-blow up in the positive
z-direction, obtaining system (P10, Q10) in the variables (w10, z10), after canceling
the factor z10 (here we do not use the superscript y as this is the only system in
this step). The degree of this new system is 234, but as we are going to see, just
the origin is a singular point in the line z10 = 0. The first terms of P10 and Q10

are:

P10 = w10

(

−
2187

4
(404x2 + 8325x− 54675) + · · ·

)

,

Q10 = z10

(

2187

2
(404x2 + 8325x− 54675) + · · ·

)

,

with x = ξ.
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Now over the line z10 = 0, the singular points of (P10, Q10) are (0, 0) and the
points (w10, 0), with w10 the real roots of

0 = 27(224799605593831132981000196646508x2

+ 11060763183198622719418769173796625x

− 289048399074933337876985160926408100)w2
10

− 1721669808(375535867201456283x2+ 10785776535503894250x

− 338993606077717260600)w10+ 41168707330260512(404x2+ 8325x− 54675),

with x = ξ. The discriminant of this equation after applying the polynomial re-
mainder is

∆(x) = 42795139080321190650757595864867731660278486158784x2

+ 2546081344010178238089386481604981090589087283168000x

− 63345629158853164845226783632142224359340633182668800.

It is simple to conclude that ∆(ξ) < 0, thus only (0, 0) is a singular point of
(P10, Q10) in z10 = 0. This singular point is the saddle depicted in in the plane
w10z10 of Fig. 5.

Since the behavior near each appearing singular points in each step above is very
simple, the blow down of each step is also very simple: following the arrays in Fig.
5, it is easy to conclude that the origin of U2 has a degenerate hyperbolic sector as
shown in the w0z0-plane of Fig 5.

4. The global phase portrait

We begin with a background on separatrices and canonical regions of the Poincaré
compactification p(X ) in the Poincaré disc D of a polynomial system ẋ = X (x).
Let ϕ be the flow of p(X ) defined in D. As usual we denote by (U,ϕ) the flow
of p(X ) on an invariant subset U ⊂ D. Two flows (U,ϕ) and (V, ψ) are said to
be topologically equivalent if there exists a homeomorphism h : U → V sending
orbits of (U,ϕ) onto orbits of (V, ψ) preserving or reversing the orientation of all
the orbits.

Following Markus [13], we say that the flow (U,ϕ) is parallel if it is topologically
equivalent to one of the following flows: (i) the flow defined in R

2 by the system
ẋ = 1, ẏ = 0; (ii) the flow defined in R

2 \{(0, 0)} by the system in polar coordinates

ṙ = 0, θ̇ = 1; and (iii) the flow defined in R
2 \ {(0, 0)} by the system in polar

coordinates ṙ = r, θ̇ = 0. Parallel flows topologically equivalent to (i), (ii) and (iii)
are called strip, annular and spiral (or radial), respectively.

We denote by γx the orbit of p(X ) passing through x when t = 0 with maximal
interval Ix, and the positive (resp. negative) orbit of γx by γ+x = {γx(t) | t ∈

Ix and t ≥ 0} (resp. γ−x = {γx(t) | t ∈ Ix and t ≤ 0}). Then we set a±(x) = γ±x \γ±x ,

here as usual γ±x denotes the closure of γ±x . Observe that a−(x) differs from α(x) in
the case of periodic orbits and singular points: indeed, a−(x) = ∅ and α(x) = γx in
this case (similarly for a−(x) and ω(x)). An orbit γx of p(X ) is called a separatrix
of p(X ) if it is not contained in an open neighborhood U such that (U,ϕ) is parallel



PHASE PORTRAIT OF A PINCHUK MAP 15

and such that both a±(x) = a±(y) for all y ∈ U and U \U consists of a+(x), a−(x)
and exactly two orbits γy and γz such that a±(x) = a±(y) = a±(z).

If X is a polynomial vector field it is known that the separatrices of p(X ) are
(i) the finite and infinite singular points of p(X ); (ii) the orbits of p(X ) contained
in the boundary S

1 of D; (iii) the limit cycles of p(X ); and (iv) the separatrices of
the hyperbolic sectors of the finite and infinite singular points of p(X ). Moreover,
if p(X ) has finitely many finite and infinite singular points and finitely many limit
cycles, then p(X ) has finitely many separatrices. We call each connected component
of the complement of the union of separatrices a canonical region of p(X ). Neumann
[14] proved that each canonical region of a vector field p(X ) is parallel.

To the union of the separatrices of p(X ) together with an orbit belonging to
each canonical region of p(X ) we call a separatrix configuration of p(X ). We say
that the separatrix configurations S1 and S2 of p(X1) and p(X2) are topologically
equivalent if there exists an orientation preserving homeomorphism from D to D

which transforms orbits of S1 onto orbits of S2. The following is the Markus-
Neumann-Peixoto classification theorem, see [13, 14, 15, 16] or [8] for more details,
for the Poincaré compactification in the Poincaré disc of polynomial systems.

Theorem 5 (Markus-Neumann-Peixoto). Let p(X1) and p(X2) be the Poincaré
compactification of two polynomial systems ẋ = X1(x) and ẋ = X2(x), respectively.
The flows of p(X1) and p(X2) on the Poincaré disc are topological equivalent if and
only if the separatrix configurations of p(X1) and p(X2) are topological equivalent.

Hence in order to qualitatively describe the phase portrait on the Poincaré disc
of system (1) it is enough to qualitatively describe its separatrix configuration. This
was done in Fig. 1, where we have drawn the separatrices other than singular points
with bold lines. The other lines are orbits contained in its respective canonical
regions. We observe from Fig. 1 that system (1) has 15 separatrices, five of them
singular points, and 7 canonical regions, six of them of type strip and the one
formed by the closed orbits surrounding z0, annular.

Below we prove Theorem 3 by proving that Fig. 1 is a separatrix configuration
of system (1).

From the previous sections we conclude that close enough to the singular points,
the phase portrait of system (1) is qualitatively the one presented in Fig. 6. For
further references we label the hyperbolic, parabolic and elliptic sectors presenting
in the origins of the charts U1 and V1 in Fig. 6 as h1, h2, h3, h4, p1, p2 and e1, e2,
respectively.

From the definition of system (1), each of its orbits is a connected component of
a level set of HF = (p2+ q2)/2 (because the ony singular point of this system is the
center z0), which in turn is the inverse image under F = (p, q) of circles surrounding
the point (0, 0). Since F preserves orientation (because the Jacobian determinant
of F is positive), each orbit of (1) is carried onto a curve contained in a circle with
counterclockwise orientation. As we have seen in section 2, the curve β(s) defined
in (3) is the asymptotic variety of F . Moreover, the points β(0) = (−1,−995/4)
and β(1) = (0, 208) of this curve have no inverse image under F , all the other
points of this curve have exactly one inverse image and the other points of R2 have
precisely two inverse images. Acting as in [6], we delete from the curve β(s) the



16 J.C. ARTÉS, F. BRAUN, AND J. LLIBRE

h1

h2

p1

p2

h3

h4

e1

e2

Figure 6. The phase portrait of system (1) near the singular points.

points β(0) and β(1), obtaining three curves: C1 = β(−∞, 0), C2 = β(0, 1) and
C3 = β(1,∞). According to [6], the inverse image under F of each Ci is a curve
that divides the plane into two connected components. We callDi the inverse image
of Ci, i = 1, 2, 3. The set D1 ∪ D2 ∪ D3 is called in [6] the asymptotic flower of
F . It follows that R2 \ (D1 ∪D2 ∪D3) is formed by 4 connected components, each
of them mapped twice onto each of the two connected components of R2 \ {β(s)}.
Each curve Ci has a natural orientation, given by its parametrization (it is the
opposite orientation used in [6]). So each curve Di also has a natural orientation
(recall that F preserves orientation). The graphics of Ci and Di, i = 1, 2, 3, are
given in (a) and (b) of Fig. 7, respectively. As in [6, 7] the axes in (a) have different
scales. Following [6], we label the regions as R (right) and L (left) of the curves Ci

and Di.

−1 1−

1
2

1
2

−300

300

−150

150

C1

C2 C3

L

R

R

(a) Asymtotic variety

D1

D2

D3

L

L

R

R

(b) Asymptotic flower

Figure 7. The asymptotic variety and flower of F .
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Since for each s ∈ R

β′(s) · β(s) =
1

4
(1− s)s(s+ 1)

(

112500s6 − 232875s5 + 301125s4 − 425760s3

+ 432312s2 − 86565s+ 116423
)

,

and this polynomial of degree 6 multiplying (1 − s)s(s + 1) has no real zeros by
Sturm’s theorem, it follows that the curves C1, C2 and C3 are transversal to the
circles centered at (0, 0). As a consequence the curvesD1, D2 andD3 are transversal
to the non-singular orbits of system (1). In particular, the image of a non-periodic
orbit of system (1) has α- and ω-limits contained in the curve β(s). Below we will
say that the image of an orbit starts or finishes at β(s0) meaning that its α- or
ω-limit is β(s0), respectively. Moreover, through each point in the intersection of
C1 ∪C2 ∪ C3 with a circle, it crosses exactly one image of an orbit of system (1).

We call S1 and S2 the circles centered at (0, 0) and containing the points β(1)
and β(0), respectively.

The point z0, being the inverse image under F of (0, 0) = β(−1), is contained
in the curve D1. The images under F of the closed orbits surrounding z0 are
circles surrounding (0, 0) contained in the bounded region defined by S1. Thus the
boundary of the period annulus of the center z0 corresponds to the arc of circle
contained in S1, starting and finishing at the point β(1). This means that the
boundary of the period annulus is an orbit that goes to infinity through the region
labeled by L in (b) of Fig. 7. In particular, in the Poincaré disc, this orbit tends to
the origin of the chart V1. Then analyzing the possibilities in Fig. 6, we see that
this orbit contains the two separatrices of the hyperbolic sector h2. This period
annulus is an annular canonical region.

Now we analyze the parabolic sectors p1 and p2.

Close to the two points of D1 cut by the orbit giving the boundary of the period
annulus of the center (i.e. the orbit connecting the two separatrices of the hyperbolic
sector h2), and outside the period annulus, there must exist orbits cutting D1.
Analyzing the images of these orbits, they are contained in circles surrounding the
circle S1. So there are two possibilities for the images of these orbits: either they
are arcs starting and finishing at a point of the curve C2, or they are arcs starting
at the curve C3 and finishing at the curve C2 or C3. At a first glance both of these
possibilities are compatible with the parabolic sectors p1 and p2 in Fig. 6. We claim
that the correct possibility is the first one. Indeed, we can increase the radii of these
circles containing the images of the orbits of p1 and p2 until we achieve the circle
S2. If we are in the second possibility, the orbit whose image is contained in S2

and starts at a point of C3 will contain the separatrice of the end of the parabolic
sector p2. But this orbit will not contain the separatrice of the end of the parabolic
sector p1, because we can continue drawing arcs starting at C3 with radii bigger
than the radius of S2. Thus the parabolic sector p1 will not finish, a contradiction
with the nature of the vector field at the origin of the chart V1, as shown in Fig 6.
This proves the claim.

So the image of the orbits of the parabolic sectors p1 and p2 are arcs starting
and finishing at a point of the curve C2. And since we can continue drawing these
arcs until we arrive at circle S2, this means that the parabolic sectors p1 and p2 are
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connected, and the image of the orbit containing the separatrices that separate p1
from h1 and p2 from h3 is contained in the arc of S2 starting and finishing at the
point β(0). The region connecting p1 to p2 is a strip canonical region, see Fig. 1.

Now since the image of this last orbit cuts the curves C3 and C1, there must
exist orbits near it whose images cross C3 and C1. The only possibility is that
those images are arcs of circles starting at the curve C1, rotating a complete turn
crossing C3 and C1 and continue up to finishing in the curve C3. We call these
orbits the big orbits. A big orbit whose image is contained in a circle close enough
to S2 enters both the hyperbolic sectors h1 and h3. We have to see where the big
orbits start and finish.

The orbits whose images are arcs of the circles with radii smaller than the radius
of S2, starting and finishing at C1 and contained in the region R correspond to an
elliptic sector with boundary formed by an orbit having image contained in the arc
of S2 starting at C1 an finishing at β(0). Close to this boundary and out of the
elliptic sector there must exist orbits whose images start at C1. These orbits are
the big orbits. Hence it follows that this elliptic sector is e1 and that the big orbits
start at the origin of V1, see Fig. 1.

The orbits whose images are arcs starting and finishing at C1 and contained in
the region L form the elliptic sector e2. Clearly its boundary is formed by the two
orbits containing the separatrices of the hyperbolic sector h4. The image of these
orbits are the arcs starting at C1 and finishing at β(1) and starting at β(1) and
finishing at C1, respectively.

In particular this means that the big orbits must finish at the origin of the chart
U1, below the hyperbolic sector h4. Since their images are contained in the circles
bigger that S2, there exist orbits whose images are arcs contained in the circles
between S1 and S2, starting at C1, crossing C2 and finishing at C3. These orbits
produce a parabolic sector between h3 and e2, and give rise to a strip canonical
region as presented in Fig. 1.

The big orbits also produce a strip canonical region.

The orbits of the strip canonical region formed above the hyperbolic sector h4
have their images contained in arcs of circles with radii bigger than the radius of
S1, starting at C3 and finishing at C1.

The elliptic sectors e1 and e2 form another two strip canonical regions.

Hence we have 7 canonical regions, six of them are strip and one is annular. An-
alyzing Fig. 1, we see there are 6 finite orbits that are separatrices. The infinite has
another 4 orbits. Hence, since there are 5 singular points, we have 15 separatrices
in the separatrix configuration of system (1) in the Poincaré disc.
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