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Abstract

We say that a polynomial differential system ẋ = P (x, y), ẏ = Q(x, y) having the
origin as a singular point is Z2-symmetric if P (−x,−y) = −P (x, y) and Q(−x,−y) =
−Q(x, y).

It is known that there are nilpotent centers having a local analytic first integral, and
others which only have a C∞ first integral. But up to know there are no characterized
these two kinks of nilpotent centers.

Here we prove that the origin of any Z2-symmetric is a nilpotent center if, and
only if, there is a local analytic first integral of the form H(x, y) = y2 + · · ·, where the
dots denote terms of degree higher than two.
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tent singularity.

1 Introduction and statement of the main results

We consider a planar differential system of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

with P and Q defined and analytic in a neighborhood of the origin where the origin is
an isolated singular point. The local phase portrait near an isolated singular point can
be determined by the Hartman-Grobman theorem except for the case of a monodromic
singularity. We recall that a singular point is monodromic when nearby orbits rotate
around it. For analytic differential systems it is known that the unique monodromic
singularities are centers and foci. We recall that a center is a singular point for
which there exists a punctured neighborhood filled of periodic orbits, and a focus has
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a punctured neighborhood filled of spiraling orbits. The center problem consists in
distinguishing between a center or a focus at a monodromic singular point. If the
linear part has pure imaginary eigenvalues or has zero eigenvalues but the linear part
is not identically zero then there exist algorithms to find the necessary conditions to
have a center, see [10, 15, 25]. However, the characterization when the linear part is
totally zero is an open problem, see [17, 18, 19, 20, 22] for some partial results.

In this work we focus on nilpotent singularities, that is, the case when the linear
part has two zero eigenvalues but the linear part is nonzero. For such singularities,
unlike the case of pure imaginary eigenvalues, does not exist, in general, an analytic
first integral in a neighborhood of the origin when the singular point is a center,
see [11]. Nevertheless an interesting question is: What nilpotent centers still have an
analytic first integral like the linear type centers? Of course the nilpotent Hamiltonian
systems is a big family which have this property. But the question is if there exist
other big families with this characteristic. It is well known that all the centers, and
in particular the nilpotent centers always have a C∞ first integral, see [24].

In [9] it is considered the following differential system

ẋ = y +X2n+1(x, y), ẏ = Y2n+1(x, y), (1.2)

where X2n+1 and Y2n+1 are homogeneous polynomials of degree 2n+1 and the origin
is a monodromic singular point. The change of variables x = x1 − α(−β)−1/2y1,
y = (−β)−1/2y1 and dt = (−β)−1/2dτ where α = X2n+1(1, 0) and β = Y2n+1(1, 0)
transforms system (1.2) into the system

ẋ = y + P2n+1(x, y), ẏ = Q2n+1(x, y), (1.3)

where P2n+1 andQ2n+1 are homogeneous polynomials of degree 2n+1 with P2n+1(1, 0)
= 0, and Q2n+1(1, 0) = −1. From [8] it is known that for system (1.3) there exists a
formal series of the form

U = (n+ 1)y2 +

∞∑
k=1

P2(kn+1)(x, y), (1.4)

where P2(kn+1) are homogeneous polynomials of degree 2(kn+1) and P2(n+1)(1, 0) = 1,
such that its derivative along the trajectories of system (1.3) takes the form

dU

dt
=

∞∑
k=1

fk x
2(k+1)n+2,

where fk are the focus quantities at the origin of system (1.3). In fact if P2(kn+1)(0, 1) =
0, then the formal series (1.4) is uniquely determined. In [8] it is proved that the origin
of system (1.3) is a center if and only if fk = 0 for all k and if fk = 0 for k = 1, . . . ,m−1
but fm ̸= 0 then the origin is a focus of order m.

This result for system (1.3) was generalized in [1] to the following analytic family
of planar vector fields

X =

∞∑
i=0

Xq−p+2is, (1.5)

where Xk denotes a (p, q)-quasi-homogeneous vector field of weighted degree k (see
definition in the next section) and satisfying the following three conditions:

(i) p and q are positive odd integers without common factors and p ≤ q;

(ii) s = np− q ≥ 1 for some integer n ≥ 2;

(iii) Xq−p = y∂x and Xq−p+2s = X(2n−1)p−q = A(x, y)∂x+B(x, y)∂y with B(1, 0) < 0.
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Without loss of generality we can take B(1, 0) = −1, which means that the mono-
mial −x2n−1 is always present in B(x, y). Family (1.5) contains the systems of the
form (1.3). For such a big family in [1] was obtained the same result that for system
(1.3). In [1] it was conjectured that all systems of family (1.5) have an analytic first in-
tegral defined in a neighborhood of the origin. This claim is, in fact, a straightforward
consequence of the results given in [23]. Hence our first result is the following:

Theorem 1.1 The origin of system (1.5) is a nilpotent center if, and only if, there
is a local analytic first integral which can be expanded as H(x, y) = y2+ · · ·, where the
dots denote terms of degree higher than two.

Moreover in [14] it is studied the cyclicity of system (1.5). Now we give the following
definition in order to establish the main result of this work.

Definition 1.2 System (1.1) is Z2-symmetric (with respect to the origin) if it is in-
variant under the involution (x, y) → (−x,−y), that is P (−x,−y) = −P (x, y) and
Q(−x,−y) = −Q(x, y).

Note that system (1.5) and its particular case system (1.3) are Z2-symmetric.
The main result of this work is the following.

Theorem 1.3 The origin of any Z2-symmetric is a nilpotent center if, and only if,
there is a local analytic first integral of the form H(x, y) = y2 + · · ·, where the dots
denote terms of degree higher than two.

Theorem 1.3 gives the first great family of systems, of course apart from the Hami-
tonians ones, having a nilpotent center with a local analytic first integral around the
singular point.

2 Preliminaries results and proof of the main result

As usual we define the set of natural numbers N = {1, 2, . . .}. A scalar polynomial f is
quasi-homogeneous of type t = (t1, t2) ∈ N2 and degree k if f(εt1x, εt2y) = εkf(x, y).
The vector space of quasi-homogeneous scalar polynomials of type t and degree k is
denoted by Pt

k. A polynomial vector field F = (P,Q)T is quasi-homogeneous of type
t and degree k if P ∈ Pt

k+t1
and Q ∈ Pt

k+t2
. The vector space of quasi-homogeneous

polynomial vector fields of type t and degree k is denoted by Qt
k. Given an analytic

vector field F, we can write it as a quasi-homogeneous expansion corresponding to a
fixed type t:

F(x) = Fr(x) + Fr+1(x) + · · · =
∑
j≥r

Fj , (2.6)

where x ∈ R2, r ∈ Z+ and Fj ∈ Qt
j i.e., each term Fj is a quasi-homogeneous vector

field of type t and degree j. Any Fj ∈ Qt
j can be uniquely written as

Fj = Xhj + µjD0, (2.7)

where µj = 1
r+|t| div (Fj) ∈ Pt

j , hj = 1
r+|t|D0 ∧ Fj ∈ Pt

j+|t|, D0 = (t1x, t2y)
T , and

Xhj
= (−∂hj/∂y, ∂hj/∂x)

T
is the Hamiltonian vector field with Hamiltonian function

hj , see [2, Prop.2.7] for more details of this decomposition.
As we have said, in this work we are interested in the center problem for Z2-

symmetric analytic nilpotent differential systems in the plane, i.e., differential systems
of the form

ẋ = y + P (x, y), ẏ = Q(x, y), (2.8)
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where P,Q are analytic function in a neighborhood of the origin without constants
and linear terms with P (−x,−y) = −P (x, y) and Q(−x,−y) = −Q(x, y).

The following result provides the first quasi-homogeneous component of a mon-
odromic Z2-symmetric nilpotent vector field.

Proposition 2.4 (Monodromic normal preform) Consider system (2.8) that now
we write as ẋ = F(x). If the origin of system (2.8) is monodromic then there exist a
Z2-symmetric polynomial change Φ and a type t such that F̃ := Φ∗F is a Z2-symmetric
vector field, F̃ = F̃r + · · ·, F̃r ∈ Qt

r, where the dots are quasi-homogeneous terms of
type t and degree greater than r, and the first quasi-homogeneous component respect
to the type t, F̃r is of one of the following two forms:

(A) F̃r = (y,−x4n−1)T ∈ Q(1,2n)
2n−1 , i.e., t = (1, 2n) and r = 2n− 1, n ∈ N.

(B) F̃r = (y + dx2n+1,−x4n+1 + (2n + 1)dx2ny)T ∈ Q(1,2n+1)
2n , i.e., t = (1, 2n + 1)

and r = 2n, n ∈ N.

Proof. System (2.8) can be written as

ẋ = y + xf̃1(x
2) + yx2f̃2(x

2, y2) + y3f̃3(y
2),

ẏ = xg̃1(x
2) + yg̃2(x

2) + xy2g̃3(x
2, y2) + y3g̃4(y

2).
(2.9)

with f̃1(0) = g̃1(0) = f̃3(0) = g̃2(0) = g̃4(0) = 0 and f̃2(0, 0) = g̃3(0, 0) = 0. Let
us denote by M the lowest-degree in the Taylor expansion of g̃1(x); and N is the

minimum of the lowest-degrees of the Taylor expansions for f̃1(x) and g̃2(x). Hence,

M = ∞ arises if g̃1(x) ≡ 0 and N = ∞ corresponds to f̃1(x) ≡ g̃2(x) ≡ 0. Then, we
can write the nilpotent system (2.9) as

ẋ = y + x2N+1f̂1(x
2) + x2yf̃2(x

2, y2) + y3f̃3(y
2),

ẏ = x2Nyĝ2(x
2) + x2M+1ĝ1(x

2) + xy2g̃3(x
2, y2) + y3g̃4(y

2),
(2.10)

where M ∈ N∪{∞}, M ≥ 1, N ∈ N∪{∞}, and f̂1(x) = a+O (x), ĝ1(x) = b+O (x),

ĝ2(x) = c+O (x), f̃2(x, y) = O (x, y), f̃3(y) = O (y), g̃3(x, y) = O (x, y), g̃4(y) = O (y)
with (a2 + c2)b ̸= 0.

• If M = ∞, then the line y = 0 is filled up of singular points, the origin is not
monodromic and we must exclude this case.

• If M < 2N then the Newton diagram of (2.10) has two exterior vertices V1 =
(0, 2) associated to the vector field (y, 0)T and V2 = (2(M + 1), 0) associated to
the vector field (0, cx2M+1)T , with c ̸= 0, and a unique compact edge of type
(1,M + 1) whose vector field associated is FM = (y, cx2M+1)T where FM = Xh

with h = −(cx2(M+1) − (M + 1)y2)/(2(M + 1)). We look at different cases in
function of the discriminant of h, ∆ = 4(M + 1)c

– If c > 0 applying statement (2) of [3, Theorem 3] we have that the origin of
system (2.8) is not monodromic.

– If c < 0 then h has not any real factor. Then by [3, Proposition 6] the origin
of system(2.8) is monodromic. Applying the rescaling x = u(−1/c)1/(2M),
y = v(−1/c)1/(2M) we obtain the case (A) when M is odd taking 2n =
M + 1, or the case (B) when M es even taking d = 0 and 2n = M .

• If 2N < M < ∞ then the Newton diagram of (2.10) has two exterior vertices
V1 = (0, 2) associated to the vector field (y, 0)T and V3 = (2(M+1), 0) associated
to the vector field (0, cx2M+1)T with c ̸= 0 and the inner vertex V2 = (2N +1, 1)
associated to the vector field (ax2N+1, bx2Ny)T , with a2 + b2 ̸= 0, where this
last vertex has no even coordinates. Applying [3, Theorem 3, statement (1)],
the origin of system (2.10) is not monodromic.
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• If 2N = M < ∞ then the Newton diagram of (2.10) has two exterior vertices
V1 = (0, 2) associated to the vector field (y, 0)T and V2 = (2(2N+1), 0) associated
to the vector field (0, cx4N+1)T with c ̸= 0, and a unique compact edge of type
(1, 2N+1) whose vector field associated is F2N = (y+ax2N+1, cx4N+1+bx2Ny)T

with c(a2 + b2) ̸= 0.

It is a simple task to perform the splitting (2.7) for this case. We obtain Fr =
Xh + µD0, with r = 2N , r + |t| = 2(2N + 1), and

h(x, y) = c
2(2N+1)x

2(2N+1) +
(

b
2(2N+1) −

1
2a

)
x2N+1y − 1

2y
2

= − 1
2

(
y −

(
b

2(2N+1) −
a
2

)
x2N+1

)2

− ∆

2(2N + 1)
x2(2N+1),

µ(x, y) = b+(2N+1)a
2(2N+1) x2N ,

where ∆ = (b − (2N + 1)a)2 + 4(2N + 1)c is the discriminant of h. We see the
different cases in function of the sign of ∆.

(i) If ∆ > 0, then h is decomposed into a product of two simple factors. Ap-
plying [3, Theorem 3, statement (4)], the origin of system (2.8) is not mon-
odromic.

(ii) If ∆ ≤ 0 taking Ψ0(x, y) =
(
x, y −

(
b

2(2N+1) −
a
2

)
x2N+1

)T

we get (Ψ0)∗ Fr

= (y + d̃x2N+1, ∆
4(2N+1)x

4N+1 + (2N + 1)d̃x2Ny)T with d̃ = b+(2N+1)a
2(2N+1) .

We must take into account that as the change Ψ0 is Z2-symmetric this
change transforms system (2.10) into another Z2-symmetric one.

(ii.1) If ∆ < 0 the rescaling x = u(−4(2N + 1)/∆)1/(4N), y = v(−4(2N +
1)/∆)1/(4N) transforms the system into another one whose first quasi-
homogeneous term is Fr = (y + dx2N+1,−x4N+1 + (2N + 1)dx2Ny)T

with d = (−4(2N + 1)/∆)1/2d̃. This corresponds to the case (B) for
n = N .

(ii.2) If ∆ = 0 we have a system (2.10) with new values of N and M , and we
repeat the previous arguments.

Next Lemma is a technical result that will be used later on.

Lemma 2.5 Let F be the vector field defined by F := −Xh +
∑2k

j=k α
(0)
j xjD0 +∑∞

l=1

∑2k
j=0 α

(l)
j xjhlD0, where k ∈ N, h = 1

2y
2 + 1

2k+2x
2k+2 ∈ Pt

2k+2, D0 = (x, (k +

1)y)T ∈ Qt
0 and t = (1, (k+1))T and consider the change of coordinates to generalized

polar coordinates and the scaling of time given by

(x, y) = (uCs(θ), uk+1Sn(θ)), dt = 1
uk dτ, (2.11)

where (Cs(θ),Sn(θ)) are the solutions to the initial value problem (dx/dθ, dy/dθ) = Xh

with x(0) = 1, y(0) = 0. Then system (ẋ, ẏ)T = F(x, y), doing the change of variables
(2.11), is transformed into system

du

dτ
= u

 2k∑
j=k

α
(0)
j Csj(θ)uj−k +

∞∑
l=1

2k∑
j=0

α
(l)
j Csj(θ)u2(k+1)l+j−k

 ,

dθ

dτ
= 1.

Proof. It is a simple matter to show that the functions Cs(θ),Sn(θ) have the following
properties:
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(i) They satisfy 1
2Sn

2(θ) + 1
2k+2Cs

2k+2(θ) = 1 for all θ. Therefore h(x, y) = u2k+2

and ∇h ·D0 = (2k + 2)h(x, y) = (2k + 2)u2k+2.

(ii) They are periodic functions with the same minimal period T , and satisfy Cs(T ) =
1 and Sn(T ) = 0.

Additional properties of these functions can be found in [13].
Differentiating x = uCs(θ), y = uk+1Sn(θ) with respect to the time, and denoting

x = (x, y)T , we get ẋ = 1
uD0u̇+ 1

ukXhθ̇. From this we obtain:

ẋ ∧Xh = 1
uD0 ∧Xhu̇ = 1

u∇h ·D0u̇ = 1
u (2k + 2)h(x, y)u̇ = (2k + 2)u2k+1u̇,

D0 ∧ ẋ = 1
ukD0 ∧ (−Xh) θ̇ = − 1

uk∇h ·D0θ̇ = − 2k+2
uk h(x, y)θ̇ = −(2k + 2)uk+2θ̇.

On the other hand we have

ẋ ∧Xh =

 2k∑
j=k

α
(0)
j xj +

∞∑
l=1

2k∑
j=0

α
(l)
j xjhl

D0 ∧Xh

=

 2k∑
j=k

α
(0)
j cosj(θ)uj +

∞∑
l=1

2k∑
j=0

α
(l)
j cosj(θ)u2(k+1)l+j

∇h ·D0

= (2k + 2)u2k+2

 2k∑
j=k

α
(0)
j cosj(θ)uj +

∞∑
l=1

2k∑
j=0

α
(l)
j cosj(θ)u2(k+1)l+j

 ,

D0 ∧ ẋ = D0 ∧ (−Xh) = −∇h ·D0 = −(2k + 2)h(x, y) = −(2k + 2)u2k+2.

Therefore we get

u̇ = u

 2k∑
j=k

α
(0)
j cosj(θ)uj +

∞∑
l=1

2k∑
j=0

α
(l)
j cosj(θ)u2(k+1)l+j

 ,

θ̇ = uk,

and applying the rescaling of time dt = u−kdτ we obtain the result.

Hence in order to study the centers at the origin of systems (2.8), it is enough to
study the systems whose first quasi-homogeneous component are of type (A) or (B)
according to Proposition 2.4.

The following result shows that in case (B) the first quasi-homogeneous component
can be simplified.

Theorem 2.6 If the vector field F = F̃2n + · · ·, with F̃2n = (y + dx2n+1,−x4n+1 +

(2n+ 1)dx2ny)T ∈ Q(1,2n+1)
2n has a center at the origin then d = 0.

Proof. If the origin of system (ẋ, ẏ)T = F̃2n+· · · is a center, by [5, Theorem 5] also is a
center the origin of system (ẋ, ẏ)T = (y+dx2n+1,−x4n+1+(2n+1)dx2ny)T . Applying
the change of variables (2.11) for k = 2n we obtain system (u′, θ′)T = (dCs2n(θ)u, 1)T

whose solutions are given by θ(τ) = θ0 a constant and u(τ) = u0e
dCs2n(θ0)τ . Therefore,

we have d = 0, otherwise the origin of (ẋ, ẏ)T = F̃2n is a focus.

Consequently to study the center problem for system (2.8), without lost of gener-
ality, we can assume that the first quasi-homogeneous component of the vector field

respect to the type t = (1, n + 1) is Fn = (y,−x2n+1)T ∈ Q(1,n+1)
n . Notice that this

case includes cases (A) and (B) of Proposition 2.4.
The following result provides a normal form of these vector fields.
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Proposition 2.7 Let F be the Z2-symmetric vector field, F :=
∑

j≥n Fj where Fj ∈
Qt

j, t = (1, n + 1) and Fn = (y,−x2n+1)T . Then the vector field F is orbitally
equivalent to

G := Fn +

n∑
j=⌊n2 ⌋+1

αjx
2jD0 +

∞∑
l=1

n∑
j=0

α
(l)
j x2jhlD0,

where h = 1
2y

2 + 1
2(n+1)x

2n+2, and D0 = (x, (n+ 1)y) ∈ Qt
0.

Proof. By [4, Theorem 16] we have that the vector field Fn+· · · is orbitally equivalent

to Fn+
∑2n

j=n+1 αjx
jD0+

∑∞
l=1

∑2n
j=0 α

(l)
j xjhlD0. On the other hand the vector field

F is Z2-symmetric. If µ is a scalar function sum of homogeneous monomial of degree
even then µF is a Z2-symmetric vector field, and if G is a Z2-symmetric vector field
then [F,G] is also a Z2-symmetric vector field. So applying changes of variables that
are Z2-symmetric and the rescaling of time µ with µ(−x,−y) = µ(x, y), we obtain a
Z2-symmetric normal form. Following the ideas [4, Section 2] it is possible to prove
that a normal form Z2-symmetric of F is the projection of the normal form shown
above over the Z2-symmetric vector fields, i.e.

Fn +

n∑
j=⌊n2 ⌋+1

αjx
2jD0 +

∞∑
l=1

n∑
j=0

α
(l)
j x2jhlD0,

Theorem 2.8 The origin of system (2.8) is a center if, and only if, there exists n ∈ N
such that it is orbitally equivalent to (ẋ, ẏ)T = (y,−x2n+1)T .

Proof. The sufficient condition is trivial since the origin of (ẋ, ẏ)T = (y,−x2n+1)T is
a center.

Now we see the necessary condition. If the origin of system (2.8) is a center then
by Proposition 2.4 and Theorem 2.6, we can affirm that system (2.8) is conjugate to
system (ẋ, ẏ)T = Fn+ · · · being Fn = −Xh ∈ Qt

n with h = 1
2y

2+ 1
2n+2x

2n+2 ∈ Pt
2n+2,

t = (1, n+1). Applying Proposition 2.7, we get that system (2.8) is orbitally equivalent
to the system ẋ = G(x) where

G := Fn +

n∑
j=⌊n2 ⌋+1

α
(0)
j x2jD0 +

∞∑
l=1

n∑
j=0

α
(l)
j x2jhlD0.

By Lemma 2.5, applying now the change (2.11) for k = n, we obtain the differential
equation

du

dθ
= u

 n∑
j=⌊n2 ⌉+1

α
(0)
j Cs2j(θ)u2j−n +

∞∑
l=1

n∑
j=0

α
(l)
j Cs2j(θ)u2(n+1)l+2j−n

 .

If all α
(l)
j = 0 the result is proved. Otherwise we define

l0 = min
{
l ∈ N ∪ {0} : α

(l)
j ̸= 0 for some j

}
, j0 = min

{
j : α

(l0)
j ̸= 0

}
,

in this case the differential equation takes the form

du

dθ
= α

(l0)
j0

Cs2j0(θ)u2(n+1)l0+2j0−n(1 +O(u, θ)). (2.12)
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We write the solution of (2.12) starting at u = u0 when θ = 0 as

u(θ, u0) =

∞∑
i=1

ai(θ)u
i
0 + f(θ, u0), (2.13)

where a1(0) = 1, ai(0) = 0 for i ≥ 2 and f(0, u0) = 0 with f flat at u0 = 0. Hence
the Poincaré return map from the section {(u, θ) = (u0, 0), u0 > 0} to itself is given
by the power series P (u0) = a1(T )u0 + a2(T )u

2
0 + · · ·.

By replacing (2.13) into the differential equation (2.12) we get a1(θ) ≡ 1, ai(θ) ≡ 0,
for i = 2, · · · , 2(n+ 1)l0 + 2j0 − n− 1 and

a2(n+1)l0+2j0−n(T ) = α
(l0)
j0

∫ T

0

Cs2j0(θ)dθ ̸= 0.

Hence the origin of system ẋ = G(x) would be a focus, which is a contradiction.

Next result relates the center problem with the integrability of the Z2-symmetric
nilpotent vector fields.

Theorem 2.9 If the origin of system (2.8) is monodromic, then the origin of system
(2.8) is a center if, and only if, system (2.8) is analytically integrable.

Proof. The sufficient condition is trivial because if system(2.8) is analytically inte-
grable and the origin is monodromic then the origin is a center.

On the other hand if the origin of system (2.8) is a center by Theorem 2.8 there
exists n ∈ N such that system (2.8) is orbitally equivalent to (ẋ, ẏ)T = (y,−x2n+1)T .
But this system is Hamiltonian, and therefore polynomially integrable. Undoing the
change of variables we have that system (2.8) is formally integrable and by applying
[23, Theorem A] we deduce that F is analytically integrable.

Remark. We know that all the linear type centers are analytically integrable, see
[21, 25]. This does not happen with nilpotent centers, in this case the characterization
of a center is determined by the orbital reversibility, see [10]. Theorem 2.9 provides
another large family of vector fields with this property, that is, the center problem is
equivalent to the analytic integrability problem for these systems.

The following result provides an efficient algorithm to characterize and compute
Z2-symmetric nilpotent centers.

Theorem 2.10 Let F be the vector field of system (2.8). The following statements
are satisfied.

(i) There exists a formal function I(x, y) = y2 +
∑

j≥2 I2j(x, y) with I2j(x, y) ho-
mogeneous polynomial of degree 2j and certain constants αj ∈ R, j ≥ 3, such
that

∇I · F =
∑
j≥3

αjx
2j (2.14)

Moreover, it is possible to choose I2j(0, y) ≡ 0 for all j ≥ 3 and in this case I is
the unique formal function that satisfies (2.14).

(ii) If the origin of system (2.8) is monodromic, it is a center if, and only if, αj = 0
for all j ≥ 3.

Proof. We write F = (y, 0)T +
∑

k≥1 F2k+1 with F2k+1 = (P2k+1, Q2k+1)
T .
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We prove that it is possible to choose I2j with j ≥ 3 satisfying statement (i). For
j = 2, the expression ∇I · F of degree 4 is

(∇I · F)4 = ∇y2 · F3 +∇I4 · (y, 0)T = 2yQ3 +
∂I4
∂x

y.

=

(
∂I4
∂x

+ 2Q3

)
y

Choosing I4(x, y) = β2y
4 + xJ3(x, y) with β2 ∈ R, and J3(x, y) = − 1

x

∫ x

0
2Q3(u, y)du

which is a homogeneous polynomial of degree 3, we get (∇I · F)4 = 0.
The expression ∇I · F of degree 2j with j > 2 is

(∇I · F)2j = ∇y2 · F2j−1 +∇I2j · (y, 0)T +

j−1∑
i=2

∇I2i · F2(j−i)+1

= 2yQ2j−1 +
∂I2j
∂x

y +

j−1∑
i=2

∇I2i · F2(j−i)+1.

There exists an homogeneous polynomial R2j−1 of degree 2j − 1 and a constant
αj ∈ R such that

j−1∑
i=2

∇I2i · F2(j−i)+1 = R2j−1y + αjx
2j . (2.15)

and therefore

(∇I · F)2j =

(
2Q2j−1 +

∂I2j
∂x

+R2j−1

)
y + αjx

2j .

So we must to take I2j(x, y) = βjy
2j + xJ2j−1(x, y) where

J2j−1(x, y) = − 1

x

∫ x

0

(R2j−1(u, y) + 2Q2j−1(u, y)) du,

is a homogeneous polynomial of degree 2j − 1 and βj ∈ R. If we choose βj = 0 we
obtain a unique polynomial I2j with I2j(0, y) ≡ 0.

Now we prove statement (ii). First, we see the sufficient condition. If αj = 0 for
all j ≥ 3, then system (2.8) is formally integrable, by applying [23, Theorem A] we
deduce that it is analytically integrable. As the origin of the system is monodromic
then it is a center. Next we see the necessary condition. If the origin of system (2.8)
is a center, by Theorem 2.9 the system is analytically integrable and by [11, Theorem
1] we can affirm that there exists a first integral of the form I = y2 +

∑
j>2 Ij where

Ij is a homogeneous polynomial of degree j.
Taking into account that system (2.8) is Z2-symmetric, that is, invariant by the

involution (x, y) → (−x,−y) its first integral inherits this property. Consequently
I2i+1 = 0 for all i ≥ 1.

On the other hand, the level curves I = C where C is a constant are ovals in a
neighborhood of the origin because I is a first integral of a center. We assume that not
all αj are zero, and we consider j0 = min {j ∈ N, j ≥ 3 : αj ̸= 0}. Applying condition
(2.14) we have

∇I · F = αj0x
2j0 (1 + o(1)) .

Hence ∇I · F ≥ 0 if αj0 > 0, or ∇I · F ≤ 0 if αj0 < 0, i.e. the orbits of the system
(2.8) cross the ovals I = C always outward or inward. Therefore the origin of system
(2.8) is a focus, which is a contradiction.

9



The following results characterize the centers of some families of Z2-symmetric
nilpotent systems of the form

ẋ = y + P2n+1(x, y),
ẏ = Q2m+1(x, y),

(2.16)

where P2n+1 and Q2m+1 are homogeneous polynomials of degree 2n + 1 and 2m +
1, respectively, and Q2m+1(1, 0) < 0, otherwise the origin of system (2.16) is not
monodromic. Without loss of generality we can assume that Q2m+1(1, 0) = −1, that
is, we can take Q2m+1(x, 0) = −x2m+1.

Proposition 2.11 If the origin of (2.16) is a center, then it is satisfied one of the
following conditions:

(a) m < 2n.

(b) 2n ≤ m and P2n+1(1, 0) = 0.

Moreover, in this last case the first component of the vector field associated to system
(2.16), respect to the type t = (1,m+ 1) is Fm = (y,−x2m+1)T ∈ Qt

m.

Proof. If P (1, 0) = a2n+1 ̸= 0 and 2n < m, then the Newton diagram of (2.16) has two
exterior vertices V1 = (0, 2) associated to the vector field (y, 0)T and V3 = (2(m+1), 0)
associated to the vector field (0,−x2m+1)T , and the inner vertex V2 = (2n + 1, 1)
associated to the vector field (a2n+1x

2n+1, 0)T where this last vertex has no even
coordinates. Applying [3, Theorem 3, statement (1)], the origin of system (2.16) is
not monodromic, therefore it is not a center.

If P (1, 0) = a2n+1 ̸= 0 and 2n = m, then the Newton diagram of (2.16) has two
exterior vertices V1 = (0, 2) associated to the vector field (y, 0)T and V3 = (2(m +
1), 0) associated to the vector field (0,−x2m+1)T , and a unique compact edge of type
(1,m+ 1) whose vector field associated is Fm = (y + a2n+1x

m+1,−x2m+1)T .
It is a simple task to perform the splitting (2.7) for this case. We obtain Fm =

Xh + µD0, where D0 = (x, (m+ 1)y)T , and

h = − 1
2(m+1)

(
(m+ 1)y2 + a2n+1(m+ 1)xm+1y + x2(m+1)

)
= − 1

2

((
y + a2n+1

2 xm+1
)2

+∆x2(m+1)
)
,

∆ =
4−(m+1)a2

2n+1

4(m+1) ,

µ = 1
2a2n+1x

m ̸≡ 0.

(i) If ∆ < 0 then h has two simple factors. Applying [3, Theorem 3, item (4)] we
deduce that the origin of system (2.16) is not monodromic, which is a contradic-
tion.

(ii) If ∆ = 0 the unique invariant curve of Fr is C = y + 1
2a2n+1x

m+1, and conse-
quently Fr is not polynomially integrable because ∇C · Fr = (m + 1)µC ̸= 0.
Therefore F is not integrable and by Theorem 2.9 the origin of system (2.16) is
not a center.

(iii) If ∆ > 0 the unique invariant curve of Fm is h and consequently Fm is not
polynomially integrable because ∇h ·Fm = 2(m+ 1)µh ̸= 0. Therefore F is not
integrable and by Theorem 2.9 the origin of system (2.16) is not a center.

Thereforem < 2n orm = 2n with P2n+1(1, 0) = 0, and in this case the first component
of the vector field associated to system (2.16), respect to the type t = (1,m + 1) is
Fm = (y,−x2m+1)T .

10



Theorem 2.12 Consider system (2.16) with m < 2n or (m = 2n and P2n+1(1, 0) =
0), and n ̸= km, 1 ≤ k ≤ m+1. Then the origin of (2.16) is a center if, and only if, the
system (2.16) is Rx-reversible, i.e. invariant by the symmetry (x, y, t) → (−x, y,−t).

Proof. By Proposition 2.11 if m < 2n or m = 2n and P2n+1(1, 0) = 0 we have that
the first component of the vector field F associated to system (2.16), respect to the
type t = (1,m+1) is Fm = (y,−x2m+1)T , i.e. F = Fm+ · · ·. The origin of the system
ẋ = Fm(x) is monodromic because Fm = Xh with

h = −1

2
y2 − 1

2m+ 2
x2m+2,

which is a negative defined function. Applying [5, Theorem 2] the origin of system
(2.16) is monodromic.

The sufficient condition is trivial because if system (2.16) is Rx-reversible, as the
origin of system (2.16) is monodromic, this implies that the origin of (2.16) is a center.

Now we are going to prove the necessary condition. If we assume that the origin of
system (2.16) is a center by Theorem 2.10 there exists a unique formal function I =
y2 +

∑
j≥2 I2j where I2j is a homogeneous polynomial of degree 2j with I2j(0, y) ≡ 0

such that ∇I · F = 0.
We consider F = F̃ + F where F̃ is sum of even monomials in x in the first

component and odd in the second one, i.e. F̃ is Rx-reversible, and F is a sum of odd
monomials in x in the first component and even in the second one. If F ≡ 0, F is Rx-
reversible and the result is proved, otherwise let p be the lowest quasi-homogeneous
degree respect to the type t = (1,m+ 1) of the vector field F such that Fp ̸≡ 0.

Working with respect of type t = (1,m+ 1) we have that

F̃ = Fm + · · ·

where dots indicate Rx-reversible quasi-homogeneous vector fields of degree greater
than m. Therefore F̃ is Rx-reversible and applying [5, Theorem 2] the origin of system
ẋ = F̃(x) is monodromic, that is, the origin of system ẋ = F̃(x) is a center. Hence by

Theorem 2.10 there exists a unique formal function Ĩ = y2 +
∑

j≥2 Ĩ2j where Ĩ2j is a

homogeneous polynomial of degree 2j with Ĩ2j(0, y) ≡ 0 such that ∇Ĩ · F̃ = 0.
As Fm is Rx-reversible, we have m < p. Considering the type t = (1,m + 1),

then F and F̃ coincide up to degree j with m ≤ j ≤ p − 1, and F̃p ̸≡ Fp because
Fp ̸≡ 0. Considering also the type t = (1,m + 1) we will have I =

∑
j≥2(m+1) Ij ,

Ĩj =
∑

j≥2(m+1) Ĩj , with Ij , Ĩj ∈ Pt
j , Ij = Ĩj for 2(m + 1) ≤ j ≤ m + 1 + p, being

I2(m+1) = (m+ 1)y2 + x2(m+1).

Consider J = I− Ĩ then the first quasi-homogeneous term of J is of order m+2+p
and satisfies:

0 = ∇I · F = ∇(Ĩ + J) · (F̃+ F) = ∇J · F̃+∇I · F.

Therefore

0 = (∇I · F)2(m+1)+p = ∇Jm+2+p · F̃m +∇I2(m+1) · Fp. (2.17)

Since Fp is a sum of odd monomials in x in the first component and even in the

second, we have that ∇I2(m+1) ·Fp is sum of even monomials in x and ∇Jm+2+p · F̃m

too. Therefore Jm+2+p is sum of odd monomials in x. Moreover Jm+2+p is sum of
homogeneous monomials of degree even. Then it is sum of odd monomials in y. Let
s ∈ N such that (2s− 1)(m+ 1) ≤ m+ 2 + p < (2s+ 1)(m+ 1). Therefore

Jm+2+p =

s∑
l=1

αlx
Aly2l−1, where Al = m+ 2 + p− (2l − 1)(m+ 1).

Then the following situations can happen:
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(i) Fp = (0, b2m+1−i1x
2m+1−i1yi1)T with i1 = 2i − 1 odd, that is, p = 2im with

1 ≤ i ≤ m+ 1.

(ii) Fp = (a2n+1−j1x
2n+1−j1yj1)T with j1 = 2j even, that is, p = 2n + 2jm with

0 ≤ j ≤ n.

(iii) Fp = (a2n+1−j1x
2n+1−j1yj1 , b2m+1−i1x

2m+1−i1yi1)T with i1 = 2i − 1 odd and
j1 = 2j even, that is, p = 2im = 2n + 2jm with 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n,
which implies n = (i− j)m with 1 ≤ i− j ≤ m+1. This case is excluded by the
hypothesis n ̸= km, 0 ≤ k ≤ m+ 1.

(i) Case p = 2im with n ̸= km, for 0 ≤ k ≤ m + 1. In this case Fp = F2im =
(0, b2(m+1−i)x

2(m+1−i)y2i−1)T , and m+2+p = (2i−1)(m+1)+2(m+1− i)+1.
Therefore s = i and

Jm+2+p =

i∑
l=1

αlx
Aly2l−1, where

Al = 2(i− l)(m+ 1) + 2(m+ 1− i) + 1, and

∇I2(m+1) · Fp = 2(m+ 1)b2(m+1−i)x
2(m+1−i)y2i.

From equation (2.17) we get

−α1 = 0,

Alαl − (2l + 1)αl+1 = 0, 1 ≤ l ≤ i− 1,

Aiαi = −2(m+ 1)b2(m+1−i) ≠ 0.

Consequently equation (2.17) provides a contradiction.

(ii) Case p = 2n+2jm with n ̸= km, for 0 ≤ k ≤ m+1. In this case Fp = F2n+2jm =
(a2(n−j)+1x

2(n−j)+1y2j , 0)T , and m + 2 + p = (2j + 1)(m + 1) + 2(n − j) + 1.
Therefore s = j + 1 and

Jm+2+p =

j+1∑
l=1

αlx
Aly2l−1, where

Al = 2(j + 1− l)(m+ 1) + 2(n− j) + 1, and

∇I2(m+1) · Fp = 2(m+ 1)a2(n−j)+1x
2(m+n−j)+1y2j .

Again from equation (2.17) we obtain

−α1 = 0,

Alαl − (2l + 1)αl+1 = 0, 1 ≤ l ≤ j − 1,

αjAj − (2j + 1)αj+1 = −2(m+ 1)a2(n−j)+1 ̸= 0,

Aj+1αj+1 = 0.

Consequently equation (2.17) provides also a contradiction.

3 Applications

We consider the differential system

ẋ = y + a21x
2y + a12xy

2 + a03y
3 + a32x

3y2 + a23x
2y3 + a14xy

4 + a05y
5,

ẏ = −x3 + b21x
2y + b12xy

2 + b03y
3.

(3.18)
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Theorem 3.13 The origin of system (3.18) is a center if, and only if, one of the
following conditions holds.

(a) b21 = a32 = a12 = b03 = 0,

(b) b21 = a32 = a14 = a12 + 3b03 = a21 + b12 = 0, b03 ̸= 0,

(c) b21 = a14 = a05 = a03 = a23 = a12 + 3b03 = a32 + 6b03b12 = 0, b03b12 ̸= 0.

Proof. The origin of system (3.18) is monodromic. Just see that the first quasi-
homogeneous component respect to the type t = (1, 2) is F1 = (y,−x3) and apply
Proposition 2.4. We will use the scalar algorithm of Theorem 2.10 and we will impose
that the constants α6, α8, · · · , must be null. When we apply the algorithm the value
of the first constants modulo the annulation of the previous ones are:

α6 = b21,

α8 = a12 + 3b03,

α10 = 2a21b03 + 2b03b12 + a32,

α12 = 3a14 − 2b03(a21 + b12)(a21 − 2b12),

α14 = b03
[
(a21 + b12)(a21b12 − 2b212 + 3a03)− 3a23

]
.

(i) If b03 = 0 then we have a14 = a32 = a12 = b21 = 0, and we obtain the case (a). In
this case the vector field F = (y+a03y

3+a21x
2y+a05y

5+a23x
2y3,−x3+b12xy

2)T

is Rx reversible and therefore the origin is a center.

(ii) If b03 ̸= 0 then a23 = (a21 + b12)(a21b12 − 2b212 +3a03)/3 and the next constant is

α16 = b03(a21 + b12)
2(a21b12 − 2b212 + 3a03).

(ii.1) If a21 + b12 = 0, then a23 = a14 = a32 = b21 = 0, with a12 = −3b03 ̸= 0
that is the case (b). The vector field in this case is F = (y − b12x

2y −
3b03xy

2 + a03y
3 + a05y

5,−x3 + b12xy
2 + b03y

3)T which is Hamiltonian and
hence the origin is a center.

(ii.2) If b03(a21 + b12) ̸= 0 then the vanishing of α16 implies a03 = − 1
3b12(a21 −

2b12), and the following constant is

α18 = b03a05(a21 + b12).

Since b03(a21 + b12) ̸= 0, the unique possibility to vanish α18 is to take
a05 = 0, Imposing this condition the following constant value is

α20 = b303(a21 + b12)
2(a21 − 2b12).

Imposing a21 = 2b12, we get a05 = a03 = a23 = a14 = b21 = 0, a12 =
−3b03 ̸= 0, a32 = −6b03b12 ̸= 0, which determines the case c). In this case
the vector field associated is F = (y−3b03xy

2+2b12x
2y−6b03b12x

3y2,−x3+
b03y

3 + b12xy
2)T . This vector field has the inverse integrating factor V =

(1 + 2b12x
2)3/2, V (0) ̸= 0, consequently F is analytic integrable, and since

the origin is monodromic, it is center.

Now we consider the differential system

ẋ = y + a90x
9 + a81x

8y + a72x
7y2 + a63x

6y3 + a54x
5y4,

ẏ = −x5 + b41x
4y + b23x

2y3 + b14xy
4 + b05y

5.
(3.19)

Theorem 3.14 Then origin of system (3.19) is a center if, and only if, one of the
following conditions holds.
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(a) a90 = a72 = a54 = b41 = b23 = b05 = 0.

(b) a81 = a72 = a63 = a54 = b41 = b14 + b05 = b23 + 9a90 = 0, a90 ̸= 0.

Proof. The origin of system (3.19) is monodromic. This can easily be seen taking into
account that the first quasi-homogeneous component respect to the type t = (1, 3) is
F1 = (y,−x5) and applying Proposition 2.4. Now, as before, we will use the scalar
algorithm of Theorem 2.10 imposing that the first constants α6, α8, · · · , must be null.
The value of the first constants modulo the annulation of the previous ones is:

α10 = b41,

α14 = b23 + 9a90,

α18 = 7a72 + 15b05,

α22 = −61a81a90 − 21a90b14 + 3a54,

α26 = −567a90a63 − a72(195a81 + 11b14),

α30 = 1280a290a72 + (39a281 − 337a81b14 − 96b214)a90 − 37a72a63.

In fact, we have compute the constants α30+4i for 1 ≤ i ≤ 4. In order to find the
irreducible decomposition of the ideal generated by these constants we have used the
routine minAssGTZ [12] of the computer algebra system Singular [16]. As a result
we have obtained the necessary conditions (a) and (b) of the theorem.

Now we will see the sufficiency of these two conditions.
In the case (a) system (3.19) is Rx-reversible and since the origin is monodromic

then it is a center.
In the case (b) system (3.19) is a sum of two quasi-homogeneous vector field of

type t = (1, 3). More specifically ẋ = F := F2 + F8 con F2 = Xh ∈ Qt
2 with

h = −y2/2 − x6/6 and F8 = a90(x
9,−9x2y3)T ∈ Qt

8. Moreover F has the inverse
integrating factor V = h(1 − 3a90x

3y). Hence by [7, Theorem 1.3] system (3.19) is
analytically integrable and as the origin is monodromic, see Proposition 2.4, then the
origin is a center.

Remark. Statement (b) of Theorem 3.14 proves that the hypothesis n ̸= km with
1 ≤ k ≤ m+1 of Theorem 2.12 is necessary. Actually in this case n = 4, m = 2, k = 2
there exist centers which are not axis-reversible.

Finally, we consider the differential system

ẋ = y + a50x
5 + a41x

4y + a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5,
ẏ = −x3 + b21x

2y + b12xy
2 + b03y

3.
(3.20)

Theorem 3.15 The origin of system (3.20) is a center if, and only if, system (3.20)
is Rx-reversible.

Proof. By applying Proposition 2.4, the origin of system (3.20) is monodromic. From
the algorithm of Theorem 2.10, the value of the first constants modulo the annulation
of the previous ones are:

α6 = b21,

α8 = 5a50 + 3b03,

α10 = 5a32 + b03b12,

α12 = 15a14 + b03(45a41 + 8b212),

α14 = b03
[
345a23 − 288b203 + 200b312 + 1005b12a41

]
.

i) If b03 = 0 then we have a14 = a32 = a50 = b21 = 0 and we obtain the vector field
F = (y + a41x

4y + a23x
2y3 + a05y

5,−x3 + b12xy
2)T , that it is Rx reversible and

therefore the origin is a center.

14



ii) If b03 ̸= 0 then a23 = 96b203/115− 40b312/69− 67b12a41/23 and the next constant is

α16 = b03(77625a05 + 39312b203b12 + 5175a241 − 48000b212a41 − 11200b412).

Then the vanishing of α16 implies

a05 = −1456

2875
b203b12 −

1

15
a241 +

128

207
b212a41 +

448

3105
b412,

and the next constants are:

α18 = b03
[
154350b12a

2
41 + 75(6140b312 + 48033b203)a41 + 4b212(24500b

3
12 + 72981b203)

]
,

α20 = b03
[
−137473875a341 + 14694097950b212a

2
41 + 45b12(383059300b

3
12

+1129106061b203)a41 + 3184216000b612 − 951034932b203b
3
12 + 7784075376b403

]
,

α22 = b03
[
−3203784643500b12a

3
41 + 1350(6574383245b312 − 44293983786b203)a

2
41

+45b212(261072714500b
3
12 + 28971358803b203)a41 + 4b12(547617815500b

6
12

−1232261979255b203b
3
12 + 2341088776656b403)

]
.

In this case, there are no values such that α18 = α20 = α22 = 0 except that all
the remaining parameters be zero.
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