SOLUTION OF THE CENTER PROBLEM FOR A CLASS POLYNOMIAL DIFFERENTIAL SYSTEMS

CHANGJIAN LIU ${ }^{1}$, JAUME LLIBRE ${ }^{2}$, RAFAEL RAMÍREZ ${ }^{3}$ AND VALENTÍN RAMÍREZ ${ }^{2}$

Abstract. Consider the polynomial differential system of degree m of the form
$\dot{x}=-y\left(1+\mu\left(a_{2} x-a_{1} y\right)\right)+x\left(\nu\left(a_{1} x+a_{2} y\right)+\Omega_{m-1}(x, y)\right)$,
$\dot{y}=x\left(1+\mu\left(a_{2} x-a_{1} y\right)\right)+y\left(\nu\left(a_{1} x+a_{2} y\right)+\Omega_{m-1}(x, y)\right)$,
where μ and ν are real numbers such that $\left(\mu^{2}+\nu^{2}\right)(\mu+\nu(m-2))\left(a_{1}^{2}+a_{2}^{2}\right) \neq 0, m>2$ and $\Omega_{m-1}(x, y)$ is a homogenous polynomial of degree $m-1$. A conjecture, stated in [9] suggests that when $\nu=1$, this differential system has a weak center at the origin if and only if after a convenient linear change of variable $(x, y) \longrightarrow(X, Y)$ the system is invariant under the transformation $(X, Y, t) \longrightarrow(-X, Y,-t)$. For every degree m we prove the extension of this conjecture to any value of ν except for a finite set of values of μ.

1. Introduction and statement of The main results

Let

$$
\mathcal{X}=P \frac{\partial}{\partial x}+Q \frac{\partial}{\partial y}
$$

be the real planar polynomial vector field associated to the real planar polynomial differential system

$$
\begin{equation*}
\dot{x}=P(x, y), \quad \dot{y}=Q(x, y) \tag{1}
\end{equation*}
$$

As usual the dot denotes derivate with respect to the time t. In what follows we assume that the origin $O:=(0,0)$ is a singular point, i.e. $P(0,0)=Q(0,0)=0$.

The singular point O is a center if there exists an open neighborhood U of O where all the orbits contained in $U \backslash\{O\}$ are periodic.

The study of the centers of the polynomial differential systems (1) has a long history. The first works are due to Dulac [5] and Poincaré [14]. Later on where developed by Liapunov [11], Bendixson [3], Frommer [6] and many others.

In this paper we shall study the polynomial vector field

$$
\begin{equation*}
\mathcal{X}=(-y+X) \frac{\partial}{\partial x}+(x+Y) \frac{\partial}{\partial y} \tag{2}
\end{equation*}
$$

associated to the real planar polynomial linear type center

$$
\begin{equation*}
\dot{x}=-y+X, \quad \dot{y}=x+Y \tag{3}
\end{equation*}
$$

For X and Y polynomials starting with terms of second order the center-focus problem asks about the conditions on the coefficients of X and Y under which the origin of system (3) is a center.

A first mechanism for solving the focus-center problem is the Poincaré-Liapunov Theorem.

[^0]
[^0]: 2010 Mathematics Subject Classification. 34C07.
 Key words and phrases. center problem, polynomial differential system.

