CHARACTERIZATION OF THE TREE CYCLES WITH MINIMUM POSITIVE ENTROPY FOR ANY PERIOD

DAVID JUHER, FRANCESC MAÑOSAS, AND DAVID ROJAS

ABSTRACT. Consider, for any integer $n \geq 3$, the set Pos_n of all *n*-periodic tree patterns with positive topological entropy and the set $\operatorname{Irr}_n \subset \operatorname{Pos}_n$ of all *n*-periodic irreducible tree patterns. The aim of this paper is to determine the elements of minimum entropy in the families Pos_n , Irr_n and $\operatorname{Pos}_n \setminus \operatorname{Irr}_n$. Let λ_n be the unique real root of the polynomial $x^n - 2x - 1$ in $(1, +\infty)$. We explicitly construct an irreducible *n*-periodic tree pattern \mathcal{Q}_n whose entropy is $\log(\lambda_n)$. We prove that this entropy is minimum in Pos_n . Since the pattern \mathcal{Q}_n is irreducible, \mathcal{Q}_n also minimizes the entropy in the family Irr_n . We also prove that the minimum positive entropy in the set $\operatorname{Pos}_n \setminus \operatorname{Irr}_n$ (which is nonempty only for composite integers $n \geq 6$) is $\log(\lambda_{n/p})/p$, where *p* is the least prime factor of *n*.

1. INTRODUCTION

The field of Combinatorial Dynamics has its roots in the striking Sharkovskii's Theorem [31], in the sense that the theory grew up as a succession of progressive refinements and generalizations of the ideas contained in the original proof of that result. The core of the theory is the notion of *combinatorial type* or *pattern*.

Consider a class \mathcal{X} of topological spaces (closed intervals of the real line, trees, graphs and compact surfaces are classic examples) and the family $\mathcal{F}_{\mathcal{X}}$ of all maps $\{f \colon X \longrightarrow X : X \in \mathcal{X}\}$ satisfying a given property (continuous maps, homeomorphisms, etc). Any of such maps gives rise, by iteration, to a discrete dynamical system. Assume now that we have a map $f \colon X \longrightarrow X$ in $\mathcal{F}_{\mathcal{X}}$ which is known to have a periodic orbit P. The *pattern of* P is the equivalence class \mathcal{P} of all maps $g \colon Y \longrightarrow Y$ in $\mathcal{F}_{\mathcal{X}}$ having an invariant set $Q \subset Y$ that, at a combinatorial level, behaves like P. In this case, we say that every map g in the class *exhibits* the pattern \mathcal{P} . Of course we have to precise in which sense a periodic orbit *behaves as* P. So, we have to decide which feature of P has to be preserved inside the equivalence class \mathcal{P} . The period of P, just a natural number, is a first possibility (Sharkovskii's Theorem), but a richer option arises from imposing that

- (a) the relative positions of the points of Q inside Y are the same as the relative positions of P inside X
- (b) the way these positions are permuted under the action of g coincides with the way f acts on the points of P.

An example is given by the family $\mathcal{F}_{\mathcal{M}}$ of surface homeomorphisms. The pattern (or *braid type*) of a cycle P of a map $f: M \longrightarrow M$ from $\mathcal{F}_{\mathcal{M}}$, where M is a surface, is defined by the isotopy class, up to conjugacy, of $f|_{M \setminus P}$ [19, 27].

When $\mathcal{F}_{\mathcal{X}}$ is the family of continuous maps of closed intervals, the points of an orbit P of a map in $\mathcal{F}_{\mathcal{X}}$ are totally ordered and the pattern of P can be simply

²⁰²⁰ Mathematics Subject Classification. Primary: 37E15, 37E25.

Key words and phrases. tree maps, periodic patterns, topological entropy.

This work has been funded by grants PID2020-118281GB-C31 of Ministerio de Ciencia e Innovación and 2021 SGR 00113 of Generalitat de Catalunya. D.R. is a Serra Húnter fellow.