CHARACTERIZATION OF THE RICCATI AND ABEL
POLYNOMIAL DIFFERENTIAL SYSTEMS
HAVING INVARIANT ALGEBRAIC CURVES
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ABSTRACT. The Riccati polynomial differential systems are the differential
systems of the form 2/ = co(z), ¥’ = bo(x) + b1 (x)y + be(x)y?, where ¢y and
b; for i = 0,1,2 are polynomial functions.

We characterize all the Riccati polynomial differential systems having an
invariant algebraic curve. We show that the first four higher coefficients of the
polynomial in the variable y defining the invariant algebraic curve determine
completely the Riccati differential system. A similar result is obtained for any
Abel polynomial differential systems.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In this work we study the Riccati differential equation of the form
d
1) = = By(2) + Bi(x)y + Ba(w)y’,
where B;(z) are rational functions. Indeed this differential equation can be trans-
formed into the polynomial differential system

(2) o' =co(w), Y =bo(x) +bi(x)y + ba(2)y?,
where B;(z) = b;(z)/co(x) for i=1,2,3. The maximum degree of the polynomials

co(e) and = by(x) + by(z)y + ba(x)y? is the degree of the polynomial differential
system (2).

Already Euler [3] proved that if we know one particular solution, for instance
y1(x), of the Riccati equation (1), then the general solution of (1) is y(z) = y1(z) +
1/v(x) where v(z) is the solution of the first-order linear differential equation

dv
== —(B1(x) + 2Ba(z)y1(z))v — Ba(x).

The Ricatti differential (1) is the standard example of a nonlinear first order
differential equation with a fundamental set of solutions whose general solution is

(y — 91(2))(g3(x) — g2(x))
3 H(y,g1(x),g2(x), gs(x)) = =C,
the so-called cross—ratio of three arbitrary particular solutions y = g1 (), y = ga2(z),

and y = g3(x), where C' is an arbitrary constant. Indeed, other nonlinear equations
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