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Abstract. The study of the limit cycles of planar polynomial differen-
tial equations is motivated both by its appearance in many mathematical
models of the real-world as for the second part of Hilbert’s 16th prob-
lem. In this work we briefly summarize some results on this subject
and we will also highlight the important role that the Abel’s differential
equations play in its study. In the way, we recall some nice properties
of the Riccati’s differential equations.

1. Introduction

The aim of this work is to motivate the study of limit cycles of planar
autonomous ordinary differential equations (DEs) and to illustrate the dif-
ficulties of their study. To this end, we will present some simple real-world
problems where limit cycles appear and we will also recall the Hilbert’s 16th
problem.

We will focus our attention on the limit cycles for Abel’s DEs because this
family is perhaps the “easiest one” where this question is open. Moreover,
it is known that the Hilbert’s problem restricted to the DEs of degree 2 will
follow from the full knowledge of Abel’s equations. In the way we will collect
related results for linear and Riccati’s DEs.

I first heard of Abel’s equations while I was doing my Ph.D. thesis under
the supervision of Jaume Llibre. During that period we collaborated with
Jorge Sotomayor and, in Chapter 4 of this thesis, we used them to control
the number of limit cycles of a family of planar DEs, see [58, 69, 70].

This work is an updated and extended version of my paper [60], which
was published in Catalan, and it was based on the opening lecture of the
academic year 2011-12 at the Department of Mathematics of the Universitat
Autònoma de Barcelona. The title of that lesson was “Equacions diferencials
d’Abel o el miratge de la simplicitat”, that is Abel’s differential equations or
the mirage of simplicity.
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2. Main goal

Polynomial differential equations in the plane often appear as simple
models of various phenomena in Physics, Ecology, Chemistry, Economics,
Medicine, and many other disciplines. Let us see a few examples.

Using Ohm’s, Faraday’s, and Kirchhoff’s laws the differential equation
that models the state of a RLC (resistor-inductor-capacitor) circuit can be
deduced. This equation is today called van der Pol’s equation, since it was
studied for first time by Balthasar van der Pol in 1927, see [82, 125]. In
dimensionless version it is written as ẍ+µ(x2− 1)ẋ+x = 0, or equivalently
as the system of cubic DEs in the plane,

ẋ = y, ẏ = −x− µ(x2 − 1)y,

where µ is a certain positive parameter, x gives us the normalized intensity
of the circuit and y its normalized voltage.

The predator-prey model of Rosenzweig–MacArthur ([105, 115]) is given
by the system of DEs

ẋ =
dx

dt
= rx

(
1− x

k

)
− mxy

A+ x
, ẏ =

dy

dt
= −δy + γ

mxy

A+ x
,

where all the parameters are positive, and x ≥ 0, y ≥ 0 are the densities of
both populations. By introducing a new time s such that dt/ds = A + x,
the system is transformed into a system of cubic polynomial differential
equations. In fact, in general, the models of population dynamics are written
in the so-called Kolmogorov’s form

ẋ = xf(x, y), ẏ = yg(x, y),

for certain functions f and g that take into account the interrelation be-
tween both populations, giving rise to predator-prey, parasitism, symbiosis
or competition models. These functions are often taken as polynomial or
rational.

A model, again dimensionless, to study the evolution of chemical reactions
is

ẋ = x2y − x+ b, ẏ = −x2y + a,

where a and b are positive real parameters and x and y give us the concen-
trations of the reactants; see [119]. In fact, this model is often known as
Brusselator and is a theoretical model for a type of auto-catalytic reaction.
Its name is an acronym of “Brussels” and “oscillator.”

Finally, next dimensionless differential equation models the formation of
spiral galaxies

ẋ = a(1− x− y)− bxy2, ẏ = −y(1− x− y) + bxy2,

where the two variables are related with the amount of warm and hot gas,
see [5, 85].

It can be seen that all four models are characterized by the fact that when
time increases the solutions tend to a periodic orbit (limit cycle) of the differ-
ential equation. This solution tells us how the circuit, or the predator-prey
model, or the chemical reaction, or the temperature of the gas, respectively,
behaves. In all cases, after a certain transient state, we observe a stable
oscillatory behavior of the model, see Figure 1.
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Figure 1. On the left, a limit cycle in the (x, y) plane and
two orbits tending to it. On the right, the first coordinate
x = x(t) of one of the orbits that tends to the limit cycle.

Limit cycles are present in many other situations, like for instance in the
planar DEs that appear in the Emden–Fowler’s equation of astrophysics
([26, 44]), the Blasius’ equation of fluid mechanics ([44, 127]), or in the
Selkov’s model of glycolysis ([120]).

Of course, there are many other real-world models where the correspond-
ing DEs have more than one limit cycle. For instance the planar predator-
prey model, again in dimensionless variables,

ẋ = x
(
x(1− x)− (x+ n)y

)
, ẏ = y(x+ n)(x−m),

has for some values of the parameters at least two limit cycles, see [5, 13].
Two limit cycles also appear for instance in the Holling–Tanner predator-
prey model, see [66, 94].

Remember that, in general, given an equation, ẋ = f(x), x ∈ Rn, a non-
constant solution x = φ(t) such that φ(t + T ) = φ(t), for a certain T > 0,
is called periodic orbit of the equation. The minimum value T that satisfies
the aforementioned property is called the period of the periodic orbit. If this
periodic orbit has an open neighborhood in the phase space within which
the differential equation does not have other periodic behaviors, then it is
called a limit cycle.

The above examples, and many others, show that the periodic orbits
in general, and the limit cycles in particular, are some of the interesting
objects that appear when DEs are studied. This is even more true when
we consider DEs in the plane, because in this case the Poincaré–Bendixson
theorem assures that the so-called strange attractors do not appear and
then all limit behaviors are simple. Specifically, these are either equilibrium
points (stationary behaviors) or periodic orbits (oscillatory behaviors), or
the so-called graphics or polycycles, which will not be treated in this work;
see the nice monographs [123, 124] by Jorge Sotomayor for more details
or Roussarie’s book [117]. In fact, notice that limit behaviors correspond
precisely to the solutions of a differential equation observable in real-world
models.

Anyway, the motivation to study the limit cycles of planar polynomial
DEs is not limited to its applicability for the study of various models. In
fact, Hilbert, in his famous list of problems presented in the International
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Mathematical Conference of 1900, devoted the second part of his 16th prob-
lem to propose a question on this matter. It could be summarized as

“Given the family of differential equations in R2,

ẋ = Pn(x, y), ẏ = Qn(x, y), (1)

where Pn and Qn are arbitrary polynomials of degree less
than or equal to n, find out if there is a uniform bound,
H(n), for the number of limit cycles that it may have.”

The first part of the 16th problem refers to the number and arrange-
ment of the components of a plane algebraic curve, for more details see for
instance [126, 131].

Hilbert’s question was probably motivated by the previous studies by
Henri Poincaré. It is interesting to read the work [78] in which it is explained
the Poincaré’s answer (of 1908) to the Hilbert’s list of problems.

D. Hilbert (1862-1943) H. Poincaré (1854-1912)

The second part of 16th problem is far from being solved. At the end
of the past century there were significant advances. Independently, Écalle
and Il’yashenko in [52, 86] asserted that each individual vector field of the
form (1) has a finite number of limit cycles. Nevertheless, nowadays these
proofs are not fully accepted by the mathematical community. According
Smale’s words in the year 1998 paper, [122], these works were not yet been
digested by this community. In fact, in the recent preprint [134] the author
shows a gap in Il’yashenko’s proof. At the moment this individual finitude
problem, also known as Dulac’s finitude problem, begins to be considered
again as an open problem.

Recall that, in principle, a monodromic point of a planar polynomial DE
can be a center, or a focus, or a point which is an accumulation of limit
cycles. This third possibility can be discarded if the answer to the Dulac’s
finitude problem is positive. As a consequence of the comments of the above
paragraph, the exclusion of this third possibility is also under review.

On the occasion of its centenary, several reviews emerged on the advances
in the list of problems. We cite for example [87, 95]; see also [79]. It is also
worth noting that the Smale’s paper quoted above, in a list of problems for
this century ([122]), again includes the question of the number of cycles of
planar polynomial differential equations. Due to the aforementioned diffi-
culty in addressing the general case (1), he proposed direct all efforts to
a particular case of polynomial DEs in the plane, the so-called Liénard’s
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equations,

ẋ = y − Fn(x), ẏ = −x, (2)

where Fn is a polynomial of degree n. The solution for this particular
case has also resisted all the attempts. Lately, there have been small but
important advances in regard this issue which show that it is even more
difficult than it seemed, see [45, 46, 50, 75, 93].

In fact, during 40 years people tried to prove that the maximum number of
limit cycles of (2) was [(n−1)/2], where as usual [·] denotes the integer part
function. This lower bound and the conjecture that it is the actual upper
bound was formulated in 1977 in [97] and was known as Lins–Melo–Pugh’s
conjecture. These limit cycles were obtained by the so-called Poincaré’s
perturbation method, that consists on consider a differential equation with
a continuum of periodic orbits and then perturb it to see how many of
them persist with small perturbations, see Section 4.2 for more details on
this approach. In [50] the authors showed that the conjecture was wrong.
Nowadays, it is known that for n ≥ 6 these equations have at least n − 2
limit cycles, giving the best known lower bound, see [46]. The examples in
[46, 50] with more limit cycles than expected for equation (2) were obtained
by using the geometric theory of planar slow-fast systems.

Indeed, as far as the author knows, it is yet an open problem to know
if Lins–Melo–Pugh’s conjecture holds for Liénard differential equations (2)
when Fn is odd, that is Fn(−x) = −Fn(x). In fact, there are examples with
Fn odd and [(n − 1)/2] limit cycles and all the examples with more limit
cycles correspond to a non odd Fn. Moreover, it is known that this result is
true for n = 3, 5, see [97, 118].

As a personal note, I would like to comment that the first task that,
around 1982, my Ph. D. advisor proposed me was to prove Lins–Melo–
Pugh’s conjecture. By computing the Lyapunov quantities of equation (2),
we were able to show that [(n−1)/2] was also the maximum number of small-
amplitude limit cycles that can bifurcate from the origin via an Andronov-
Hopf bifurcation, see [57]. During the same period the same result was
obtained in [17] and indeed the result was already proved by Zuppa in
1981, see [139]. In fact, in [72] it is proved that it is not a coincidence
that Poincaré’s perturbation method and the computation of the Lyapunov
quantities give rise to the same amount of limit cycles.

Very little is known about the numbers H(n). It is easy to see that planar
linear DEs do not have limit cycles, despite being able to present continua
of periodic orbits. In consequence, H(1) = 0. It is not difficult to build a
quadratic system of DEs with a limit cycle. For example the equation

ẋ = −y(2 + x+ y)− (x2 + y2 − 1), ẏ = x(2 + x+ y),

has as limit cycle the circumference x2 + y2 − 1 = 0. Moreover, it is its
unique limit cycle, because if we define V (x, y) = (2 + y)

√
|x2 + y2 − 1| it

holds that

V̇ (x, y) =
∂V (x, y)

∂x
P (x, y) +

∂V (x, y)

∂y
Q(x, y) = x2

√
|x2 + y2 − 1| ≥ 0.

Therefore, H(2) ≥ 1. Perhaps it should be noted here that, contrary to this
academic example, the most part of the limit cycles appearing in planar DEs
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cannot be explicitly found in a closed form and, in particular they are not
algebraic. It is instructive to read how to prove, for some specific systems,
that their limit cycles are not algebraic. See for instance, [53, 55, 64, 76, 106].
In particular the limit cycle of the van der Pol’s equation is not algebraic.

According to Zoladek’s paper ([136]), probably the first example of a
quadratic system with a limit cycle was given in 1929 by the physicist Som-
merfeld and moreover he got two cycles at once. Nowadays it is known that
H(2) ≥ 4, see [28, 121], and it is thought that H(2) will be 4, but this seem-
ingly simple problem is resisting all the available approaches. In fact, it is
not even known if H(2) exists although there is a proof of Bamón that each
individual quadratic differential equation has finitely many limit cycles, see
[11, 12]. Similarly it is only known that H(3) ≥ 13 or that H(4) ≥ 28,
see [79, 91, 114].

In fact, there is a point of view called finite cyclicity method introduced
by Roussarie that gives a procedure to try to prove that H(n) is finite,
see [117, Chap. 2]. The idea is to compactify the phase space, as well as
the space of polynomial DEs of degree n, and in this way a global finiteness
result will be a consequence of several local finiteness results. Then, the
problem is reduced to prove the finite cyclicity of the so-called limit periodic
sets. In short, these sets are invariant compact sets for a given DE (in the
compactified phase space) that can be approached by a sequence of limit
cycles, being these limit cycles solutions of different DEs that tend to the
initial given DE. This approach is developed in more detail for n = 2 in
[116], by presenting the list of all possible limit periodic sets, showing for
which ones is already known that they have finite cyclicity and which ones
remain to be studied. Sometimes this approach for trying to prove that
H(2) is finite is also called Roussarie’s program.

As for H(n), the best result is that it grows at least as O(n2 log(n)). This
result was proven in 1995 in [33]. See also [3, 95]. These lower bounds are
very relevant because was the first time where people prove the existence of
much more limit cycles than parameters of the differential equation, because
the number of parameters increase as O(n2).

In fact, Lloyd in [102, p. 198] conjectured that H(n) grows as O(n3).
In his own words “My reasoning is simply that O(n2) critical points can
be encircled by limit cycles, and that there are likely to be at most O(n)
limit cycles around each critical point.” It is also plausible to propose an
upper bound that grows as O(n4). The reason is that there are many situ-
ations where O(n2) limit cycles surround a single equilibrium point, see for
instance [92] and their references. Of course, what is much more difficult is
to see that both quadratic grows happen simultaneously. This point of view
is discussed in the recent paper [24]. Indeed, Smale in [122] asks if there
exists a universal constant q such that H(n) ≤ nq.

Due to the difficulty of the general Hilbert’s problem, the main objective
of this work will be to locate which is the simplest family of DEs for which
the problem of the number of limit cycles is still not solved and to give an
overview of what is the current knowledge about this family. In fact, we will
take an excursion that will start with the linear equations, continue with
the Riccati’s equations, and end with the equations of Abel’s type.
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Finally, in the last section of this paper we will see that, in fact, Abel’s
equations are strongly related to Hilbert’s problem and, more specifically, to
the determination of H(2), somehow closing the circle. In that section, we
will also consider some more families of autonomous planar DEs for which
the study of their limit cycles can be reduced to the study of some Abel’s
equations.

The study of the limit cycles for general planar DEs, not necessarily poly-
nomial, is included in most text books on differential equations. Without
the aim of being exhaustive we list some monographs where the reader can
find much more information over them, [9, 10, 31, 32, 49, 111, 117, 133, 138].

After the effort during many years of the mathematical community, un-
fortunately no universal tool for obtaining an upper bound (realistic or not)
of the number of limit cycles of a given planar differential equation is known.
As far as the author knows, there are three main approaches that have been
widely used, but they only apply to some particular families of equations.
These approaches are:

• The use of the Bendixson–Dulac criterion, see [30, 62, 63].
• Start by transforming the differential equation into a (generalized)

Liénard’s differential equation

ẋ = ϕ(y)− F (x), ẏ = −g(x),

see for instance the changes of variables and time given in [59] or
[133, pp. 356-57], and afterwards apply some of the criteria created
for these equations, see for instance [29, 133, 138].
• Transform the differential equation into a special type of differential

equation, like for instance an Abel’s DE, for which some results on
the maximum number of limit cycles are known. This is the approach
explained and developed in this work.

3. From linear to Abel’s differential equations

What a mathematician must do when faced with a problem, such as
Hilbert’s 16th, which seems out of reach? Simply look for the apparently
easier particular case of the problem that is not known how to solve and try
to find an answer for it. Then, the (secret) hope is that the idea that has
worked for this very particular case can go beyond.

It is easy to see that DEs in R do not have periodic solutions and hence
they do not have limit cycles. We have already seen that DEs in R2 do
have. It is natural to wonder ourselves what happens between R and R2?
The smooth equations of the form

ẋ = f(t, x), (3)

with x ∈ R are called non-autonomous DEs and informally it is said that
“they live in dimension 1.5”. Let us study them. Since we are looking
for differential equations with periodic solutions, we will impose in addition
that f is T -periodic in t. In fact sometimes, changing the time scale, we can
assume without loss of generality that T = 2π. For these non-autonomous
equations we can define similarly the notions of periodic orbit and limit
cycle.



8 ARMENGOL GASULL

The existing relations between the period of a non-autonomous DE and
the periods of its solutions constitute a very interesting and perhaps not
enough known matter. For completeness we state next result, proved in [37].

Theorem 3.1 ([37]). Consider a T -periodic differential equation of class C1,
ẋ = f(t, x), defined on R × Rn. Let S be the (minimal) period of one of its
periodic solutions. Then the following holds:

(i) If n = 1 then T/S ∈ N.
(ii) When n ≥ 2, for any couple of positive real numbers S, T, there is

an f, T -periodic and of class C1, having an S-periodic solution of the
corresponding differential equation.

To satisfy the reader’s curiosity, we present here some concrete examples
concerning the previous result.

For n = 1 and any 0 < k ∈ N, consider the linear T -periodic differential
equation, with T = 2π,

ẋ =
(
x− sin(kt)

)
sin t+ k cos(kt).

Clearly, it has the particular S-periodic solution x = sin(kt), with S = 2π/k.
Hence T/S = k is a positive integer number. Notice that this solution is
also a 2π-periodic function although this is not its minimal period.

Similarly, for n = 2 we can consider the equation that in compact complex
notation z = x+ iy writes as

ż =
2π

S
iz + (zz̄ − 1) sin

(2π

T
t
)
,

with S, T non-zero arbitrary real numbers. Notice that it is T -periodic
and has the S-periodic solution z = exp(2πit/S). In fact, this example is
essentially the one due to Erugin, see [112, p.10] and highlights a crucial
difference between dynamics in dimension one and in higher dimensions.
Observe also that the periodic solution lies in the circumference zz̄ − 1 = 0
where the differential equation is “autonomous”. It can be seen that this
property is shared for all periodic solutions which period S is such that
T/S 6∈ Q, see again [112]. To see that this is not the case when T/S =
m/k ∈ Q, with (m, k) ∈ N2, and gcd(m, k) = 1, consider the T -periodic
differential equation

z′ =
m

k
iz + (zk − eimt)eit,

with T = 2π, taken from [37]. It has the particular periodic solution z =

eimt/k, which has period S = 2kπ/m. Therefore T/S = m/k, as we wanted
to see.

Remark 3.2. As a consequence of item (i) of the above theorem we know
that to study the number of periodic solutions of a 2π-periodic differential
equation (3) it suffices to look for periodic solutions having also period 2π,
which perhaps may not be minimal.

If we call x = φ(t, ρ) the solution of (3) such that φ(0, ρ) = ρ, the function
Π(ρ) := φ(2π, ρ) plays a determinant role to know its number of periodic
orbits. So, the fixed points of Π(ρ) correspond to periodic orbits of (3) and
their isolated fixed points are initial conditions that give rise to limit cycles.
This map Π is usually called Poincaré map, see Figure 2. Sometimes, and
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for convenience, we will also refer to constant solutions of the equation (3),
as periodic orbits.

t = 0 t = 2π

ρ

Π(ρ) = φ(2π, ρ)

x = φ(t, ρ)

x

t

Figure 2. The Poincaré map.

Similarly, as with the zeros of the polynomials, or analytic functions,
the limit cycles of analytic DEs have associated a notion of multiplicity,
which is nothing more than the multiplicity of the zero of the displacement
function, ∆(ρ) = Π(ρ)−ρ. There are limit cycles of multiplicity 1 (which are
called hyperbolic), limit cycles of multiplicity 2, and so on. In this analytic
setting, limit cycles of infinite multiplicity do not exist because they belong
to a continuum of periodic solutions.

In next sections we will study the number of limit cycles of periodic non-
autonomous linear, Riccati’s, and Abel’s equations.

3.1. Linear differential equations. We consider linear DEs, ẋ = a(t) +
b(t)x, with a and b differentiable functions and 2π-periodic. For example,
the equation ẋ = 2 sin t+ x sin t has all solutions periodic, but has no limit
cycles. This is so because its solutions, with the initial condition x(0) = ρ,
are

x = φ(t, ρ) = −2 + (2 + ρ)e1−cos t,

and clearly all them are 2π-periodic. We note that its Poincaré map is
Π(ρ) ≡ ρ. On the other hand, the equation ẋ = 2 sin t− x has a single limit
cycle. In this case, the solutions that satisfy x(0) = ρ, are

x = φ(t, ρ) = sin t− cos t+ (1 + ρ)e−t.

Then Π(ρ) = ρ gives us the equation −1 + (1 + ρ)e−2π = ρ, which has as
a single solution ρ = −1. Therefore, the limit cycle, which is unique and
hyperbolic because Π′(−1) 6= 1, is φ(t,−1) = sin t − cos t. In general, we
have the following result.

Lemma 3.3. Linear periodic differential equations have:

(i) a continuum of periodic solutions; or
(ii) no periodic solutions; or

(iii) a single periodic solution, which is a hyperbolic limit cycle.

Proof. Without loss of generality we can consider that the period of the DE
is 2π. Moreover, by Remark 3.2 we can restrict our attention to 2π-periodic
solutions. The solution of ẋ = a(t) + b(t)x, that satisfies x(0) = ρ is

x = φ(t, ρ) =

(∫ t

0
a(s)e−B(s) ds+ ρ

)
eB(t),
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where B(s) =
∫ s

0 b(w) dw. Therefore the Poincaré map is

Π(ρ) = φ(2π, ρ) = m+ nρ,

where

m = eB(2π)

∫ 2π

0
a(s)e−B(s) ds and n = eB(2π).

The periodic orbits correspond to values of ρ that are solutions of equation
Π(ρ) = ρ, that in our case is the linear equation m+ nρ = ρ. This equation
has either a continuum of solutions, or zero, or one solution, depending
on the values of m and n. Moreover, when a limit cycle exists, then it is
hyperbolic, because it only happens when n 6= 1, and the derivative of the
displacement function ∆(ρ) = (n− 1)ρ+m is ∆′(ρ) ≡ n− 1 6= 0. �

Although linear differential equations are very simple they hide a very
interesting dynamical property, the so-called resonances. In a few words, it
is said that a resonance appears when a given equation has all its solutions
bounded (for instance they are periodic) and when we add to it a periodic
term then there appear unbounded solutions.

In most text books resonances are introduced for second order real linear
DEs. Let us see that first order linear periodic DEs, but in the complex
plane, do present resonances. For z ∈ C consider the linear equation

ż = iz + aieiωt,

where a, ω ∈ R \ {0}. Its solution satisfying Φ(0, ρ) = ρ is

z = φ(t, ρ) = ρeit +

a
eiωt − eit

ω − 1
, when ω 6= 1,

ait eit, when ω = 1.

Hence, when ω 6= 1 each solution of the differential equation is bounded,
while when ω = 1 all the solutions are unbounded. What happens when
the period of the non-autonomous part is different to the period of the
solutions of the linear autonomous part ż = iz (which is 2π), is that there
are no resonances. On the other hand, when ω = 1, the periods (or the
frequencies of oscillation) coincide and then a resonance appears. These
resonances also happen in non-linear DEs. For a survey on the subject, see
for instance [103, 108] and their references. Resonances are very important
in applications, like for instance in the study of many mechanical or electrical
models.

3.2. Riccati’s differential equations. The differential equation

ẋ+ ax2 = btα,

where a, b and α are real parameters was studied by Riccati in 1723, although
in fact individual cases of that equation were examined earlier by Daniel
Bernoulli. D’Alembert was the first to baptize with the name of Riccati the
general quadratic differential equations of the form

ẋ = a(t) + b(t)x+ c(t)x2,

in a 1769 letter to Lagrange. Before the Riccati type equations were referred
to the equations studied by Count Riccati.
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A perhaps not sufficiently known result, but in fact remarkable, is that the
study of a Riccati’s equation was one of the key tools in the famous work [15]
of D. Bernoulli. In that work he studied the effects of vaccination in the
treatment of the smallpox and, nowadays, it is considered as the beginning
of Epidemiology. More specifically, Bernoulli studied the equation

ẋ =

(
n′(t)

n(t)
− p
)
x+

p

mn(t)
x2,

where n(t) is the number of living people with age t, x(t) is the number of
people prone to contracting smallpox at age t, p is the probability of that a
prone individual contracts the disease, and 1/m the proportion of those who
die for smallpox, see also [48]. In fact, nowadays, Riccati’s equations also
appear in some papers that study the speed of certain infectious diseases,
see for example [113]. These DEs also appear in many other situations, like
for instance in geometrical problems, where Sotomayor and his coauthors
study the number of isolated and closed principal curvature lines on canal
surfaces, see [56], or in the study of some pendulum-like DEs, see [109].

J. Riccati (1676-1754) D. Bernoulli (1700-1782)

The periodic Riccati’s equations write as

ẋ = a(t) + b(t)x+ c(t)x2, (4)

where a, b, and c are differentiable and 2π-periodic functions. Recall that it is
not restrictive to fix the period of the DE to be 2π. Moreover, by Remark 3.2
we can restrict our attention to periodic solutions to the 2π-periodic ones.

It is easy to construct examples of Riccati’s equations with exactly two
limit cycles. Consider the equation

ẋ = 1 + sin t+ cos t− cos2 t− (1 + 2 sin t)x+ x2,

that has the two periodic solutions x = sin t and x = 1 + sin t. To prove
the assertion, we compute the solutions of the DE satisfying x(0) = ρ. We
arrive at

x = φ(t, ρ) = sin t+
ρ

ρ+ (1− ρ)et
.

The limit cycles are obtained by imposing that Π(ρ) = φ(2π, ρ) = ρ. This
equation is equivalent to ρ = ρ(ρ+(1−ρ)e2π), which has only two solutions,
ρ = 0 and ρ = 1. These values are the initial conditions of the two limit
cycles given above.
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We will see below a simple and well-known proof that this is the maximum
number of limit cycles that they can have in general.

Proposition 3.4. Periodic Riccati’s differential equations (4) have:

(i) a continuum of periodic solutions; or
(ii) no periodic solutions; or

(iii) a single periodic solution, that can be a hyperbolic or a double limit
cycle; or

(iv) two periodic solutions, that are both hyperbolic with opposite stabilities.

Proof. If they do not have a periodic orbit, we are done. Suppose they have
one, x = x0(t). Then doing the change of variable changes

y =
1

x− x0(t)
,

the equation (4) is written as

ẏ = −c(t)− (2c(t)x0(t) + b(t))y,

which is a linear equation and can be solved explicitly. Calculating its
solutions, and undoing the change of variables that we have done, we obtain
that the solution of (4) satisfying x(0) = ρ is

x = φ(t, ρ) =
M(t) +N(t)ρ

P (t) +Q(t)ρ
, (5)

for certain functions M,N,P,Q that depend on a, b, c, and x0.
So the Poincaré map is

Π(ρ) =
M(2π) +N(2π)ρ

P (2π) +Q(2π)ρ
=
m+ nρ

p+ qρ
,

with m,n, p and q real numbers. Then, the periodic orbits correspond to
the values of ρ that satisfy Π(ρ) = ρ, and such that φ(t, ρ) is defined for all
t ∈ R. This equation is

m+ nρ

p+ qρ
= ρ

and it has either zero, one, two, or a continuum of solutions, according to
the parameter values. Moreover all the assertions about the multiplicities
of the limit cycles follow because they coincide with the multiplicities of the
zeroes of the displacement function, which is a quadratic equation in ρ.

To end the proof it only remains to make some comments about the set
where the map Π is defined and to show the existence of examples with all
the described possibilities.

First, notice that sometimes Π is not defined on the whole real line because
some of the solutions can blow up to infinity and are such that its interval
of definition is smaller than [0, 2π]. In any case, Π is defined in a single open
interval and in this interval the map has at most two isolated fixed points,
taking into account their multiplicities. They give rise to the limit cycles of
the statement, with their corresponding multiplicities.

Finally, we include several examples of Riccati’s equations showing that
all the possibilities given in the statement are realizable.

Consider the Riccati’s equation

ẋ = cos t+ P (x− sin t), (6)
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where P is a quadratic polynomial. It is easy to see that its only periodic
solutions are x = y∗+sin t, where y∗ are the zeroes of P (y) = 0 and moreover
that the corresponding multiplicities coincide. This is so, because the change
of variable y = x − sin t transforms (6) into ẏ = P (y), and the unique
solutions of this autonomous DE satisfying y(0) = y(2π) are y(t) ≡ y∗.

Therefore we have constructed examples of all the situations of the state-
ment, but the one of a single hyperbolic limit cycle, because in the previous
construction if P has a single real zero it is double and gives rise to a double
limit cycle. To this end consider the Riccati’s equation

ẋ = 2 cos t−
(

sin t+ cos t
)

cos2 t

+
(
1− 2(sin t+ cos t) sin t

)
x+ (sin t+ cos t)x2.

Since x = sin t is a particular solution, the general solution with initial
condition x(0) = ρ can be easily obtained and it is

x = φ(t, ρ) =
e−t sin t+ ρ cos2 t

e−t − ρ sin t
.

Hence, its Poincaré map is Π(ρ) = φ(2π, ρ) = e2πρ and the Riccati’s equation
has only one limit cycle, the one corresponding to ρ = 0, that is precisely
x = sin t, which is hyperbolic because Π′(0) 6= 1. �

Although Riccati’s equations seem fully understood, there is still a prob-
lem regarding them that is not resolved. It consists on determining, only
in terms of a, b, and c, which of the four options in the proposition is the
one that happens. This is not difficult to do when some explicit solution is
known, see for instance [34]. This question and other open problems about
Riccati’s and Abel’s equations are collected in [61, Sec. 2.4].

It is also interesting to note that the Poincaré map for Riccati’s equations
is a homography or, also called, a Möbius transformation. Later, we will
come back to this point.

Riccati’s equations, not necessarily periodic, are also related with the
study of planar linear non-autonomous DEs. More concretely, if we consider
the planar differential system(

u̇
v̇

)
=

(
p(t) q(t)
r(t) s(t)

)(
u
v

)
, (7)

and we define x = u/v, then easy computations give that

ẋ = q(t) +
(
p(t)− s(t)

)
x− r(t)x2.

This property if often used in the study of Abelian integrals of the form
M(h) = αu(h)+βv(h), because the functions (u(h) and v(h) usually satisfy
the so called Picard-Fuchs differential equations, which are of the form (7)
with t = h being the energy of the unperturbed system, see for instance
[117, p. 171]. For more details about Abelian integrals and their relation
with the Hilbert’s 16th problem, see [32, Part II].

Although we will not consider these situations in this paper, Riccati dif-
ferential equations have also been studied when x ∈ C, see for instance
[22, 23, 100, 107, 128] or even for x being quaternionic-valued functions,
see [129].
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In fact, there is also a version of Riccati’s differential equations,

Ẋ +XA(t) +D(t)X +XB(t)X − C(t) = 0,

where X,A,B,C and D are square matrices, that appear for instance in
control system theory, see [16].

3.3. Abel’s differential equations. In this subsection we will consider
Abel’s equations,

ẋ = a(t) + b(t)x+ c(t)x2 + d(t)x3, (8)

with a, b, c, and d differentiable and 2π-periodic functions. Before starting
to study them, we cannot fail to comment on the importance of the work
of the eminent Norwegian mathematician Niels Henrik Abel, done in a very
short period of time. An easily accessible paper where many of his contri-
butions are explained is [83]. Briefly we will say that some of the subjects
he studied were: series, functional and algebraic equations, integral equa-
tions, and elliptic and hyperelliptic integrals. Riccati’s and what nowadays
we call Abel’s equations were studied by him in [1, Chap. IV and V]. More
specifically, in Chapter V, Abel studied the integrability of the equation(

y + s(t)
)dy

dt
= −d(t)− c(t)y − b(t)y2.

When s(t) ≡ 0, with the variable change x = 1/y, this equation is trans-
formed into (8) with a(t) ≡ 0. In general, making the change x = 1/(y+s(t))
we reach a similar result. It seems that Kamke, in his famous book on inte-
grability, was the first who gave the name Abel equation to the equation (8)
when presented the results of Abel (1881), Liouville (1886), and Appell
(1889) on the subject, see [27, 89].

N. H. Abel (1802-1829). Commemorative bill and stamp.

As in the case of Riccati’s equations, Abel’s equations often appear in
various areas of the science. See for example the works [14], [54], [80, 135]
dealing with models of Ecology, Control Theory for electrical circuits, and
Cosmology, respectively.

At this point, no one will be surprised by the assertion that there are
equations of Abel’s type with three limit cycles. This is very true, of course,
but these equations hold a surprise.

Theorem 3.5 (Lins-Neto, [96]). For any k ∈ N there is a 2π-periodic Abel’s
differential equation (8) that has at least k limit cycles, all of them hyper-
bolic.
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We will give the main ideas of the proof of this result and others properties
of Abel’s equations in the next section.

4. Some results on Abel’s equations

We will divide this section into two parts. In the first one we will enunciate
and prove some results that give, with certain additional hypotheses, upper
bounds for the number of limit cycles for Abel’s equations (8) and in the
second one we will focus on the proof of Theorem 3.5.

4.1. Results that bound the number of limit cycles for Abel’s differ-
ential equations. One of the main differences between Riccati’s or linear
equations and Abel’s equations is that, for the latter, neither the flow nor
the explicitly associated Poincaré map, Π, can be found. Fortunately, there
is a result of Lloyd [101] which gives us a very useful expression that relates
Π′,Π′′, and Π′′′.

Proposition 4.1 (Lloyd, [101]). Consider a non-autonomous 2π-periodic
differential equation (3), with f of class C3. If Π is its associated Poincaré
map, then

Π′(ρ) = exp

(∫ 2π

0

∂

∂x
f(t, φ(t, ρ)) dt

)
,

Π′′(ρ) = Π′(ρ)

[∫ 2π

0

∂2

∂x2
f(t, φ(t, ρ)) exp

(∫ t

0

∂

∂x
f(s, φ(s, ρ)) ds

)
dt

]
,

Π′′′(ρ) = Π′(ρ)

[
3

2

(
Π′′(ρ)

Π′(ρ)

)2

+

∫ 2π

0

∂3

∂x3
f(t, φ(t, ρ)) exp

(
2

∫ t

0

∂

∂x
f(s, φ(s, ρ)) ds

)
dt

]
,

where φ(t, ρ) is the solution of (3) that satisfies φ(0, ρ) = ρ.

Proof. Since x = φ(t, ρ) is the solution of (3), it holds that

∂

∂t
φ(t, ρ) = f(t, φ(t, ρ)), φ(0, ρ) = ρ.

Deriving with respect to ρ and using the Schwarz rule we have that

∂

∂t
φ′(t, ρ) =

∂

∂x
f(t, φ(t, ρ))φ′(t, ρ),

where for simplicity we use the notation

∂

∂ρ
φ(t, ρ) = φ′(t, ρ),

∂2

∂ρ2
φ(t, ρ) = φ′′(t, ρ) and

∂3

∂ρ3
φ(t, ρ) = φ′′′(t, ρ).

Therefore,

φ′(t, ρ) = exp

(∫ t

0

∂

∂x
f(s, φ(s, ρ)) ds

)
, (9)

and, moreover,
∂

∂t
ln
(
φ′(t, ρ)

)
=

∂

∂x
f(t, φ(t, ρ)).
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Deriving this equality with respect to ρ and by using again the Schwarz rule
we get

∂

∂t

(
φ′′(t, ρ)

φ′(t, ρ)

)
=

∂2

∂x2
f(t, φ(t, ρ))φ′(t, ρ). (10)

Integrating (10), we arrive at

φ′′(t, ρ)

φ′(t, ρ)
=

∫ t

0

∂2

∂x2
f(s, φ(s, ρ))φ′(s, ρ) ds.

Since Π(ρ) = φ(2π, ρ), substituting t = 2π into the above formula and
using (9), we obtain the expression for Π′′(ρ) given in the statement.

Making one more derivation of (10), with respect to ρ, we obtain

∂

∂t

(
φ′′′(t, ρ)φ′(t, ρ)− φ′′(t, ρ)2

φ′(t, ρ)2

)
=

∂3

∂x3
f(t, φ(t, ρ))φ′(t, ρ)2 +

∂2

∂x2
f(t, φ(t, ρ))φ′′(t, ρ)

=
∂3

∂x3
f(t, φ(t, ρ))φ′(t, ρ)2 +

φ′′(t, ρ)

φ′(t, ρ)

∂

∂t

(
φ′′(t, ρ)

φ′(t, ρ)

)
=

∂3

∂x3
f(t, φ(t, ρ))φ′(t, ρ)2 +

1

2

∂

∂t

((
φ′′(t, ρ)

φ′(t, ρ)

)2
)
.

So

∂

∂t

(
φ′′′(t, ρ)φ′(t, ρ)− φ′′(t, ρ)2

φ′(t, ρ)2
− 1

2

(
φ′′(t, ρ)

φ′(t, ρ)

)2
)

=
∂3

∂x3
f(t, φ(t, ρ))φ′(t, ρ)2,

from which we deduce that

φ′′′(t, ρ)

φ′(t, ρ)
− 3

2

(
φ′′(t, ρ)

φ′(t, ρ)

)2

=

∫ t

0

∂3

∂x3
f(s, φ(s, ρ))φ′(s, ρ)2 ds.

Substituting t = 2π into the previous formula and using again (9), we get
the desired expression for Π′′′(ρ). �

Applying Proposition 4.1 we can give for Abel’s equations a similar result
to Lemma 3.3 and Proposition 3.4, but adding an additional hypothesis.
This result was proved in [112], long before the previous proposition. We
will also include the original proof and compare it with the one based on
Proposition 4.1.

Theorem 4.2 (Pliss, [112]). The periodic Abel’s differential equation (8),
with d(t) > 0, has:

(i) no periodic solution, or
(ii) one, two, or three limit cycles.

Proof using Lloyd’s formula. We will use Proposition 4.1. First we note that
for our Abel’s equation,

∂3f

∂x3
(t, φ(t, ρ)) = 6d(t) > 0.
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Therefore, since in addition Π′(ρ) > 0, we have that Π′′′(ρ) > 0. Now sup-
pose, to reach contradiction, that the DE had at least four periodic solutions.
Then the displacement function ∆(ρ) = Π(ρ) − ρ, would have at least four
zeros and it would be well defined only on an open interval, I, containing
them all. Applying three times the Rolle’s theorem we would conclude that
∆′,∆′′, and ∆′′′ would have at least 3, 2, and 1 zeroes, respectively, all con-
tained in the same interval I. Since ∆′′′(ρ) = Π′′′(ρ) > 0, we have reached
the desired contradiction. Therefore, the Abel’s equation with d(t) > 0 will
have at most three periodic orbits and, if they exist, they must be hyperbolic
limit cycles. �

Original proof of Pliss of Theorem 4.2. Suppose, in order to reach contra-
diction, that the Abel’s equation (8) has four 2π-periodic solutions, x1(t) <
x2(t) < x3(t) < x4(t) and consider the positive function

H(t) :=
(x4(t)− x1(t))(x3(t)− x2(t))

(x3(t)− x1(t))(x4(t)− x2(t))
. (11)

This function, for each t, gives us the double ratio between the four points
xi(t), i = 1, . . . , 4. Calculating, we get that

d(ln(H(t))

dt
= −d(t)(x4(t)− x3(t))(x2(t)− x1(t)) < 0. (12)

On the other hand,∫ 2π

0

d(ln(H(t))

dt
dt = ln(H(2π))− ln(H(0)) = 0,

since the function H is 2π-periodic, thus reaching the desired contradiction.
Therefore the DE has at most three limit cycles as we wanted to demon-
strate. �

There are several related results that impose conditions involving the func-
tions a, b, c, d of the Abel’s equation to get an upper bound for its number
of limit cycles, see for instance [4, 19, 65, 68]

Remark 4.3. (i) The two proofs of Theorem 4.2 presented can also be
adapted to the case where d(t) does not change sign and vanishes only at
isolated points. The case d(t) ≤ 0 can be reduced to the case d(t) ≥ 0,
making the time change t→ 2π − t.

(ii) Theorem 4.2 could also be slightly improved by saying that when d(t)
does not change sign and vanishes only at isolated points, the sum of the
multiplicities of all the limit cycles of Abel’s equation is at most 3. This
result is a direct consequence of the proof based on Lloyd’s formula, but it
cannot be obtained from the proof of Pliss.

(iii) Another advantage of the proof based on Lloyd’s formula is that it
easily extends to general periodic DEs, ẋ = f(t, x), not necessarily of Abel’s

type, satisfying that ∂3f
∂x3

(t, φ(t, ρ)) does not change sign. In this way we
recover for instance the results of [8].

(iv) Examples of Abel’s equations having between 0 to 3 limit cycles, taking
into account their multiplicities and with d = 1 can be easily constructed. It
suffices to take in (6) a monic polynomial P of degree 3.
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Although the two given proofs are different in appearance, let us see
that, in essence, they are very similar. We need to remember the so-called
divided differences, which are normally used for the effective calculation of
interpolating polynomials.

Given a function g : R→ R and x1, x2, . . . , xn different real numbers, we
write gj := g(xj) and define recursively,

gi1,i2,...,in−1,in :=
gi2,...,in−1,in − gi1,i2,...,in−1

xin − xi1
.

These differences satisfy

gi1,i2,...,in = gσ(i1),σ(i2),...,σ(in),

where σ is any permutation. Also, when g is of class Cn−1,

gi1,i2,...,in−1,in =
1

(n− 1)!
g(n−1)(ξ), (13)

where ξ is a number that belongs to the interval formed by the points
x1, x2, . . . , xn, see [88]. Note that when n = 2, the expression (13) is pre-
cisely the mean value theorem.

If we take the Abel’s equation

ẋ = a(t) + b(t)x+ c(t)x2 + d(t)x3 := f(t, x),

and, following Pliss, we take four solutions x1(t) < x2(t) < x3(t) < x4(t),
we have that

d(ln(H(t))

dt
=
f(t, x4(t))− f(t, x1(t))

x4(t)− x1(t)
+
f(t, x3(t))− f(t, x2(t))

x3(t)− x2(t)

− f(t, x3(t))− f(t, x1(t))

x3(t)− x1(t)
− f(t, x4(t))− f(t, x2(t))

x4(t)− x2(t)
,

where H is given by (11). Fix t, and to simplify notation, we write xj = xj(t)
and we introduce g(xj) := f(t, xj(t)). Then, using the above expression, the
divided difference notation and its properties, we have

d(ln(H(t))

dt
= g4,1 + g3,2 − g3,1 − g4,2 = (g4,1 − g2,4) + (g3,2 − g1,3)

= g2,4,1(x1 − x2) + g1,3,2(x2 − x1) = (g1,2,4 − g3,1,2)(x1 − x2)

= g3,1,2,4(x4 − x3)(x1 − x2) = − 1

3!
g′′′(ξ)(x4 − x3)(x2 − x1)

= −1

6

∂3f(t, ξ(t))

∂x3
(x4(t)− x3(t))(x2(t)− x1(t)).

In summary, what we have seen is that the method proposed by Pliss works

because d(ln(H(t))
dt does not vanish, while the proof based on Lloyd’s formula

does so because the same thing happens with ∂3f(t,x)
∂x3

. Notice that, for
Abel’s equations, the two conditions coincide. This idea for proving the
“equivalence” between both approaches is inspired on some of the reasoning
developed in [40].

Another promising method to obtain upper bounds for the limit cycles of
planar DEs is the use of the Bendixson–Dulac criterion, see [63] and their
references. For the particular case of Abel’s equations it has been seldom
used, see for instance [4].
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To conclude this section we will see what consequences we can draw when
we apply the results obtained to the Riccati’s equations.

Applying (12), since d(t) ≡ 0, we obtain that H(t) is constant. Hence,
given any four solutions of a Riccati’s equation x1(t) < x2(t) < x3(t) < x4(t),
there exists a constant K such that

(x4(t)− x1(t))(x3(t)− x2(t))

(x3(t)− x1(t))(x4(t)− x2(t))
= K. (14)

This classic result implies that if three solutions of a Riccati’s equation
are known, any other solution can be obtained from these three. In fact,
equality (14) was surely the one that inspired Pliss for the method that he
used for proving his result on Abel’s equations.

Let us see now what Lloyd’s result tells us when we apply it to Riccati’s
equations. Applying Proposition 4.1 we obtain that the Poincaré map sat-
isfies

Π′′′(ρ) =
3

2

(
Π′′(ρ)

Π′(ρ)

)2

Π′(ρ) ⇐⇒ Π′′′(ρ) =
3

2

(Π′′(ρ))2

Π′(ρ)
. (15)

This differential equation, which by the way is called the Kummer–Schwarz
differential equation, is very easy to solve and its solutions are precisely the
homographies, giving a new proof of the result that appears in the proof of
Proposition 3.4.

One of the known properties of homographies is that they preserve the
double ratio. Remember that fixed t, the flow of a Riccati’s equation, φ(t, ρ)
given in (5), is always a homography. Putting both properties together we
get a new proof of equality (14).

The DE (15) can also be written as

S(Π)(ρ) :=
Π′′′(ρ)

Π′(ρ)
− 3

2

(
Π′′(ρ)

Π′(ρ)

)2

≡ 0.

The operator S(Π) is called the Schwarzian derivative of Π and plays an
important role in complex analysis ([81]), in the study of one-dimensional
real discrete dynamic systems ([104]), or in the study of the limit cycles of
certain non-smooth DEs ([39]). It was introduced by Hermann Schwarz in
1869, see [81, Chap. 10].

In fact, it is well known that the only meromorphic functions that have
zero Schwarzian derivative are the homographies ([81]), finding once again
the result which characterizes Poincaré maps of Riccati’s equations.

4.2. Abel’s differential equations with many limit cycles. In this
section we will give the main ideas of the proof of Theorem 3.5. As a
corollary, we will see that Theorem 4.2 cannot be extended for equations
of Abel’s type with “degree” greater than 3. We will also recall a result of
[65], which shows us that for Abel’s type equations it is not easy to know
whether its number of limit cycles is bounded or not. Following [41], we will
also state similar results on limit cycles for non-differentiable DEs. Finally,
we will comment on how the obtained result can be extended to difference
equations of Riccati’s or Abel’s type, see [18].
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Proof of Theorem 3.5. We start with a simple 2π-periodic Riccati’s equation

ẋ = c(t)x2. (16)

Their solutions x = φ0(t, ρ) satisfying φ0(0, ρ) = ρ are

x = φ0(t, ρ) =
ρ

1− ρC(t)
, where C(t) =

∫ t

0
c(s) ds.

Imposing that C(2π) = 0, we obtain that near ρ = 0 the DE has a continuum
of periodic solutions. In fact, if C := maxt∈[0,2π] |C(t)|, for |ρ| < 1/C, the
solutions of the DE are 2π-periodic because φ0(2π, ρ) ≡ ρ.

In order to obtain an Abel’s equation with at least k limit cycles, and
following Poincaré’s perturbation method, we perturb (16) as follows

ẋ = c(t)x2 + εd(t)x3, (17)

where ε is a small parameter. Then, by the smooth dependence theorems
on parameters and initial conditions, the solutions of this new DE can be
expressed as

φ(t, ρ, ε) = φ0(t, ρ) + ψ(t, ρ)ε+O(ε2).

Let us calculate ψ(t, ρ) = ∂φ(t,ρ,ε)
∂ε

∣∣∣
ε=0

. For simplicity, we write φ(t, ρ, ε) =

φ = φ0 + ψε+O(ε2), c = c(t) and d = d(t). We have that

∂

∂ t

(
φ0 + ψε+O(ε2)

)
= c

(
φ0 + ψε+O(ε2)

)2
+ εd

(
φ0 + ψε+O(ε2)

)3
= c
(
φ2

0 + 2φ0ψε+O(ε2)
)

+ εd
(
φ3

0 +O(ε)
)

= cφ2
0 +

(
2cφ0ψ + dφ3

0

)
ε+O(ε2).

Therefore ψ′ = 2cφ0ψ + dφ3
0, where ψ′ = ∂ψ(t, ρ)/∂t. Using that φ0 is

solution of (16), this DE is written as ψ′ = 2φ′0ψ/φ0 + dφ3
0 or, equivalently,

as
(
ψ/φ2

0

)′
= dφ0. Solving this DE we have

ψ(t, ρ) = φ0(t, ρ)2

∫ t

0
d(s)φ0(s, ρ) ds = φ0(t, ρ)2

∫ t

0

ρd(s)

1− ρC(s)
ds.

Recall that the solution starting at ρ is a limit cycle of the perturbed DE
if it is an isolated solution of ∆(ρ, ε) := φ(2π, ρ, ε) − ρ = 0. For |ρ| < 1/C,
since φ0(2π, ρ) ≡ ρ, this equation writes as

∆(ρ, ε) = ερ3

∫ 2π

0

d(t)

1− ρC(t)
dt+O(ε2) = 0.

The function

M(ρ) :=

∫ 2π

0

d(t)

1− ρC(t)
dt

is known as the Melnikov‘s function or Pontryagin’s function associated to
the DE (17). From the implicit function theorem applied to ∆(ρ, ε)/ε it
follows that the not null simple zeros of M give rise, for any ε sufficiently
small, to simple zeroes of the function ∆. More specifically, if ρ = ρ is such
that M(ρ) = 0 and M ′(ρ) 6= 0, then there exists a differentiable function g
such that g(0) = ρ and, for ε small enough, ∆(g(ε), ε) ≡ 0. Moreover, it is
not difficult to see that the obtained limit cycles are hyperbolic.
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In other words, what we have seen is that each one of the simple not
null zeros of M(ρ) gives rise to a hyperbolic limit cycle of the corresponding
Abel’s equation, for ε small enough. Therefore we have reduced the proof of
the theorem to find functions c and d such that the corresponding function
M has at least k not null simple zeroes.

For any k ∈ N, we take c(t) = cos t and d(t) = P (sin t), where P is a
polynomial of degree k to be determined. Then, for ρ small enough,

M(ρ) : =

∫ 2π

0

P (sin t)

1− ρ sin t
dt =

∫ 2π

0

∞∑
m=0

ρmP (sin t) sinm t dt

=

k∑
m=0

(∫ 2π

0
P (sin t) sinm t dt

)
ρm +O

(
ρk+1

)
= N(ρ) +O

(
ρk+1

)
,

where N is a polynomial in ρ of degree k. It is not difficult to see that, in
fact, given any polynomial of degree k, N , there exists a P such that its
associated Melnikov function M satisfies M(ρ) = N(ρ) + O

(
ρk+1

)
. This

freedom to fix arbitrarily the first k + 1 terms of the Taylor series of M at
the origin allows to construct a function with k non-null zeros and simple
ones, as we wanted to show. To formalize a proof of this last assertion
it suffices to notice that the proved property implies that the functions
[1, ρ, ρ2, . . . , ρk−1, ρk + O(ρk+1)] form a complete Chebyshev system on the
interval (0, δ), for δ small enough, see [90] for a complete monograph on
Chebyshev systems. In fact, from the results of [6, 67] it is also known that
M(ρ) has at most k zeros. �

A corollary of the previous theorem shows us that for Abel’s type equa-
tions, with “degree” n > 3, the number of limit cycles cannot be determined,
even if the coefficient of xn is positive. Therefore, Theorem 4.2 cannot be
extended for n > 3.

Theorem 4.4. Given n ∈ N with n > 3, and any k ∈ N, there is a DE of
the form

ẋ = a0(t) + a1(t)x+ · · ·+ an−1(t)xn−1 + an(t)xn,

with ai(t), i = 0, 1, . . . , n, 2π-periodic functions, and an(t) > 0 which has at
least k limit cycles.

Proof. Following the proof of Theorem 3.5 we know that, given any k ∈ N,
there is an Abel equation of the form

ẋ = cos t x2 + εP (sin t)x3,

with P a polynomial of degree k, and ε > 0, small enough, that has at least
k limit cycles. Recall also that these limit cycles are hyperbolic, since they
correspond to simple zeros of the displacement application ∆ associated to
the DE. Therefore, they remain by small perturbations of the DE. So if we
take the new equation

ẋ = (cos t)x2 + εP (sin t)x3 + δxn,

with δ > 0, small enough, it also has at least k limit cycles and an(t) ≡ δ > 0,
as we wanted to prove. �
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The Abel equations or the Abel-type equations considered in Theorem 4.4
have been also studied in the complex, see for instance [99, 130].

The following result from [65], which can be proved similarly to Theo-
rems 3.5 and 4.2, shows us how complicated Abel’s type equations can be.
Part (i) is also proved in [110].

Theorem 4.5. Consider the 2π-periodic Abel-like differential equations

ẋ = a(t) + b(t)x+ c(t)x2 + xn, n ∈ N.
Then:

(i) If n ≥ 3 is odd, they have at most 3 limit cycles.
(ii) If n ≥ 4 is even, for any k ∈ N, there is a DE of this type that has at

least k limit cycles.

For instance, the proof of item (i) is exactly the same that the proof for
Abel’s equations because when n ≥ 3 is odd

∂3

∂x3

(
a(t) + b(t)x+ c(t)x2 + xn

)
= n(n− 1)(n− 2)xn−3 ≥ 0

and by Proposition 4.1, the return map associated to this Abel’s like equa-
tion satisfies Π′′′(ρ) > 0.

All the above results in this section have been obtained by studying the
zeroes of the first order Melnikov function. It is worth to comment that
higher order Melnikov functions can be obtained for autonomous or non-
autonomous DEs. For instance, in [84] the authors use a second order func-
tion to study same Abel’s like differential equations. More in general, the
so-called variational equations are used in [42] or the averaging theory in [98]
to get them.

To finish this section, we state a couple of results from [21, 41, 74] for
piecewise linear non-autonomous DEs and we also make some comments
about linear, Riccati’s, or Abel’s difference equations.

The first result for piecewise linear DEs is very surprising, specially when
we compare it with the corresponding result for linear DEs given in Sec-
tion 3.1.

Theorem 4.6 ([21, 41]). For any k ∈ N, there is a piecewise linear differ-
ential equation of the form

ẋ = a(t) + b(t)|x|, (18)

with a and b trigonometric 2π-periodic polynomials, which has at least k
limit cycles.

The second result is similar to Pliss’ result for Abel’s equations because
it covers the case where b does not change sign.

Theorem 4.7 ([74]). If b does not change sign and a has finitely many zeros
then the differential equation (18) has at most two limit cycles.

Finally, we want to comment that similar results to Lemma 3.3, Propo-
sition 3.4, and Theorem 3.5 for periodic linear, Riccati’s, or Abel’s non-
autonomous difference equations also hold, see [18]. These results are proved
in that paper treating both settings, the periodic DEs and the difference
equations, under the unified point of view of time scales.
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For instance, under this point of view, linear dynamic equations write as

x∆ = a(t) + b(t)x,

Riccati’s dynamic equations as

x∆ = a(t) + b(t)x+ c(t)xxσ,

and Abel’s dynamic equations as

x∆ = a(t) + b(t)x+ c(t)xxσ + d(t)x2xσ,

where the notations x∆ and xσ are defined in the general theory of time
scales. A particular case is when the time scale is T = R, and then, x∆ = ẋ
and xσ = x, recovering the classical DEs. Another one, when T = N and
then t = n, x(t) = xn, x

∆(t) = xn+1 − xn, and xσ(t) = xn+1, giving rise to
the difference equations, see again [18].

More specifically, the linear and Riccati’s periodic difference equation
write respectively as

xn+1 = An +Bnxn, xn+1 =
An +Bnxn
1 + Cnxn

, (19)

and the Abel’s periodic difference equation as

xn+1 =
An +Bnxn

1 + Cnxn +Dnx2
n

, (20)

for some M -periodic sequences An, Bn, Cn, and Dn. The commented results
prove that linear (resp. Riccati’s ) M -periodic difference equations (19) have
either a continuum of periodic solutions, or at most 1 (resp. 2) M -periodic
solutions, while there are M -periodic Abel’s difference equations (20) having
at least M − 1 isolated periodic solutions of period M.

With regard to real-world models it is curious to notice that the sim-
plest interesting model for the evolution of a single population given by a
DE is the so-called logistic model and it is given by a Riccati’s differential
equation of the form ẋ = rx(1 − x). Similarly, its discrete analogous is the
Beverton-Holt’s model xn+1 = rxn/(1 + xn/k). Observe that it is given by
a Riccati’s difference equation. Both equations are easily solvable and their
corresponding solutions can be obtained explicitly.

5. Some relations between Abel’s equations and Hilbert’s 16th
problem

In this section we will study three families of autonomous planar polyno-
mial DEs, the quadratic, the rigid ones, and a family of unbounded degree,
for which the study of their limit cycles can be reduced to the study of some
Abel’s like equations.

For periodic Abel’s equations a problem similar to the second part of
Hilbert’s 16th problem can be posed

“Given the Abel’s family of differential equations

ẋ = bx+ cm(t)x2 + dn(t)x3, (21)
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where b ∈ R and cm and dn are 2π-periodic trigonometric
polynomials and homogeneous of degrees m and n, respec-
tively, find out if there is a bound, A(m,n), for the number
of limit cycles that (21) can have.”

Again, the existence of A(m,n) is no longer a simple problem to address.
For example in [35] it is shown that, in a similar context but substituting R
by C, this number does not exist.

We denote as A0(m,n) the value A(m,n) restricted to the case b = 0
in (21). Following the proof of Theorem 3.5 it can be seen that A0(1, n) ≥
n+ 2, see [6]. In that paper it is also proved that A0(m, 1) ≥ 2m+ 1. Both
proofs use the first order Melnikov function associated to a perturbation of
a DE with a continuum of periodic solutions. In [84] the study of a sec-
ond order Melnikov function has been used to improve these lower bounds,
showing that A0(m,n) ≥ 2(m+ n)− 1.

With a different approach based on computing a kind of Lyapunov quan-
tities associated to the solution x = 0, in the papers [6, 84] it is also proved
for instance that A0(1, 3) ≥ 7, A0(2, 2) ≥ 7, A0(3, 1) ≥ 8 or A0(1, 4) ≥ 10.

In the very recent paper [132] the authors prove that A0(1, 1) = 3, solving
Problem 6 of the list of open problems proposed in [61].

We will prove the following well-known result, which is a consequence of
the works of Cherkas [29] and Lins-Neto [96]. See also [44].

Theorem 5.1. It holds that H(2) ≤ 2A(3, 6)− 2.

Proof. First of all, we recall following [44], the next properties of the periodic
orbits of a quadratic DE:

• They surround a single equilibrium point.
• The equilibrium point must be a focus.
• Only two equilibrium points can be simultaneously surrounded by

periodic orbits.
• Periodic orbits are convex.

Since the proofs that periodic orbits satisfy all four properties they are
quite similar, we will not demonstrate all them. In fact, it ends up that
they are essentially a consequence of the study of the vector field X = (P,Q)
associated with the quadratic differential equation (ẋ, ẏ) = (P (x, y), Q(x, y))
on the straight lines passing through its equilibrium points.

We prove the first property. If the DE has only one equilibrium point,
there is nothing to be proved. If it has at least two, it is not restrictive to
assume that one of them is the origin and that another one is for example the
point (1, 0). Then ẏ|y=0 = Q(x, 0) = ax(x− 1). If a = 0, then the line y = 0
is invariant by flow of the DE and therefore no periodic orbit can surround
the origin. If a 6= 0, the sign of ax(x − 1) gives us the cutting direction of
the orbits that pass through the point (x, 0). Since for x ∈ (0, 1), this sign
is opposite to when x ∈ (−∞, 0) ∪ (1,∞), this makes it impossible for a
periodic orbit to encircle the two points at the same time, see Figure 3.(i)
for the case a > 0.

We now prove the second property. As above, it is not restrictive to as-
sume that the equilibrium point surrounded by a periodic orbit is the origin.
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xx0 1 0

(i) (ii)

Figure 3. Vector field X on y = 0.

Suppose that the differential of the field X at the origin has a real eigenvalue
λ, including also the case λ = 0. Making a rotation, if necessary, we can also
assume that (0, 1) is the eigendirection associated with the eigenvalue λ.
Then Q(x, y) = λy + ax2 + bxy + cy2. Therefore ẏ|y=0 = Q(x, 0) = ax2, see

the case a > 0 in Figure 3(ii). Arguing similarly to the previous case we have
that no limit cycle can surround the origin. Therefore, all the eigenvalues
of the differential of X at (0, 0) are complex or, in other words, the origin is
a focus, as we wanted to show.

Therefore, if a quadratic DE has limit cycles, we can assume that each of
them surrounds a single equilibrium point, which must be of focus type. By
an affine change, and a rescaling of time, this quadratic DE can write like

x′ = P (x, y) = −y + bx+ P2(x, y), y′ = Q(x, y) = x+ by +Q2(x, y),

where the prime denotes the derivative with respect to time, t, and P2 andQ2

are quadratic homogeneous polynomials. In polar coordinates, x = r cos θ,
y = r sin θ, this DE writes as

r′ = br + f(θ)r2, θ′ = 1 + g(θ)r,

where f and g are the cubic homogeneous trigonometric polynomials

f(θ) = P2(cos θ, sin θ) cos θ +Q2(cos θ, sin θ) sin θ,

g(θ) = Q2(cos θ, sin θ) cos θ − P2(cos θ, sin θ) sin θ.

If we introduce the new variable ρ, given by the Cherkas’ transformation
ρ = r/(1 + g(θ)r), we have

ρ′ =
1

(1 + g(θ)r)2
r′ − g′(θ)r2

(1 + g(θ)r)2
θ′ =

br + f(θ)r2

(1 + g(θ)r)2
− g′(θ)r2

1 + g(θ)r
.

Recall that we know that limit cycles are convex. Therefore, we can assure
1+g(θ)r > 0 on them, and the transformation is well defined in an open set
that contains all the limit cycles surrounding the origin. As r = ρ/(1−g(θ)ρ)
and 1/(1 + g(θ)r) = 1− g(θ)ρ, we arrive to

ρ′ = (1− g(θ)ρ)2

(
b

ρ

1− g(θ)ρ
+ f(θ)

ρ2

(1− g(θ)ρ)2

)
− g′(θ)ρ2

1− g(θ)ρ
.

Finally,

ρ̇ =
dρ

dθ
= (1− g(θ)ρ)ρ′ = bρ(1− g(θ)ρ)2 + f(θ)ρ2(1− g(θ)ρ)− g′(θ)ρ2

= bρ+
(
f(θ)− 2bg(θ)− g′(θ)

)
ρ2 + g(θ)(bg(θ)− f(θ))ρ3,

which is an Abel’s equation of the form (21), with cm and dn homogeneous
trigonometric polynomials of degrees 3 and 6, respectively.

Therefore, the maximum number of limit cycles surrounding the origin
is A(3, 6) − 1, because ρ = 0 does not correspond to an actual limit cycle.
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Applying the same result to the other equilibrium point that can be sur-
rounded simultaneously by limit cycles, the upper bound is doubled and we
obtain the desired result. �

Remark 5.2. In [137] the author asserts that if a quadratic DE has limit
cycles that surround two different foci, then around one of them the max-
imum number of limit cycles is one. In the 2023 meeting “Advances in
Qualitative Theory of Differential Equations, IVth edition” held in Port de
Sóller, Mallorca, A. Zegeling gave the talk “Distribution of limit cycles in
quadratic systems” where he tried to clarify some points of that paper. In
any case, if the result is true then H(2) ≤ A(3, 6).

The same idea used to prove Theorem 5.1 can also be used to study, by
means of Abel’s equations, the number of limit cycles of certain families
of polynomial DEs in the plane. One of these families is the one given by
the sum of two homogeneous (or quasi homogeneous polynomial DEs), see
for instance [25, 40]. For them, a variation of Cherkas’ transformation also
works. Other families appear in [2, 20, 38, 47, 69, 70, 71, 73].

Abel’s equations have also been useful to study integrability of some DEs,
see [77], or to study the presence of continua of periodic orbits, that is the
so-called center-focus problem, see for example [7, 36]. In fact, there is a
class of Abel’s equations that have a continuum of periodic solutions, the
so-called composition centers, introduced in [7]. They provide an interesting
class of centers for the corresponding planar differential equations.

We continue studying one of the above families of planar DEs that can
be easily transformed into an Abel’s type equation, the one formed by the
so-called rigid systems. Rigid systems are planar autonomous DEs such
that their associated angular DE in polar coordinates is θ̇ = 1. They were
introduced by Conti [43] and afterwards they have been studied by many
authors. They write as

x′ = −y + xF (x, y), y′ = x+ yF (x, y), (22)

where F is an arbitrary smooth function. Moreover, when F is a polynomial
of degree n, F = F0 +F1 + · · ·+Fn, where Fj are homogeneous polynomials
of degree j, in polar coordinates they write as the Abel’s type equations

ṙ =
dr

dθ
=

n∑
j=0

Fj(cos θ, sin θ)rj+1. (23)

When n = 1, it is a Riccati’s equation. Let us prove that then equa-
tion (22) does not have limit cycles. Set F (x, y) = F0+F1(x, y) = a+bx+cy.
Then equation (23) is

ṙ = ar + g(θ)r2, with g(θ) = b cos θ + c sin θ.

By Lemma 3.3 we know that it has at most 2 limit cycles. Let us prove
that in fact, when a 6= 0, its only periodic solution is r = 0, and hence, that
the corresponding planar DE does not have limit cycles. If it would have
another periodic orbit r = R(θ) then it would be positive or negative, but
in any case x = X(θ) := 1/R(θ) would be a non-vanishing periodic solution
of the linear DE obtained via the change of variable x = 1/r. This linear
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equation is

ẋ = −g(θ)− ax.
Since a 6= 0, by replacing x = X(θ) and integrating between 0 and 2π we
get that

0 = X(2π)−X(0) =

∫ 2π

0
X ′(θ) dθ = −

∫ 2π

0
g(θ) dθ − a

∫ 2π

0
X(θ) dθ

= −a
∫ 2π

0
X(θ) dθ 6= 0,

arriving to a contradiction. When a = 0 the DE reduces to ṙ = g(θ)r2 that
is of separable variables. It is easy to see that it can not have limit cycles
either.

The rigid DE (23) when n = 2 is precisely an Abel’s equation. If we write
the planar system as{

x′ = −y + x(a+ bx+ cy + dx2 + exy + fy2),

y′ = x+ y(a+ bx+ cy + dx2 + exy + fy2),
(24)

its expression in polar coordinates is

ṙ = ar + g(θ)r2 + h(θ)r3, (25)

where

g(θ) = b cos θ + c sin θ and h(θ) = d cos2 θ + e sin θ cos θ + f sin2 θ.

Following [71], when h does not change sign we can apply Theorem 4.2 and
Remark 4.3 to prove that this Abel’s equation has at most 3 limit cycles,
taking into account their multiplicities. Since r = 0 is always one of these
limit cycles and, by symmetry of the equation, if r(θ) is one periodic orbit
then −r(θ+π) is also another one, we get that equation (25) has at most one
positive limit cycle, which has multiplicity one. Hence, when e2 − 4df ≤ 0
(condition that implies that h does not change sign) we have proved that
equation (24) has at most one limit cycle and that, when it exists, it is
hyperbolic.

In [71], for some values of the parameters such that e2 − 4df > 0, there
are examples of (24) with at least two limit cycles. They are obtained by
computing the first three Lyapunov quantities of the origin and proving that
a codimension two Andronov–Hopf bifurcation happens. It is not known if
two is the maximum number of limit cycles that equation (24) can have.

To end the paper we will say a few words about another family of planar
DEs. Following [73] consider{

x′ = x
(
Pn−1(x, y) + Pn+2m−1(x, y) + Pn+3m−1(x, y)

)
+Qn+m(x, y),

y′ = x
(
Pn−1(x, y) + Pn+2m−1(x, y) + Pn+3m−1(x, y)

)
+Rn+m(x, y),

(26)
where n and m are positive natural numbers and Pk, Qk, and Rk are homo-
geneous polynomials of degree k. If we introduce the function

gn+m+1(θ) = Rn+m(cos θ, sin θ) cos θ −Qn+m(cos θ, sin θ) sin θ,

the following holds.
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Theorem 5.3. ([73]) Consider system (26). Then:

(a) When n+m is even it has no limit cycles.
(b) When n+m is odd:

(i) If gn+m+1 vanishes it has no limit cycles.
(ii) If Pn+3m−1 does not change sign it has at most three limit cycles

counting their multiplicities and this upper bound is sharp.
(iii) If Pn+3m−1 changes sign there are systems having at least four limit

cycles.

The proof of items (a) and (b)-(i) simply follows by noticing that, apart
from the (0, 0), all the other equilibrium points of the system are on the
straight lines θ = θ∗, where gn+m+1(θ∗) = 0, which are invariant by the
flow. Finally, under the hypotheses of both items, it follows that the set of
zeroes of gn+m+1 is non empty.

The proof of item (b)-(ii) is again a consequence of Theorem 4.2 and Re-
mark 4.3. In fact, if we write equation (26), in the modified polar coordinates

x = r1/m cos θ, y = r1/m sin θ, we get the 2π-periodic Abel’s equation

ṙ =
dr

dθ
= a(θ) + b(θ)r + c(θ)r2 + d(θ)r3, (27)

where

a(θ) =
mfn+1(θ)

gn+m+1(θ)
, b(θ) =

mfn+m+1(θ)

gn+m+1(θ)
,

c(θ) =
mfn+2m+1(θ)

gn+m+1(θ)
, d(θ) =

mfn+3m+1(θ)

gn+m+1(θ)
,

with

fn+m+1(θ) = Qn+m(cos θ, sin θ) cos θ +Rn+m(cos θ, sin θ) sin θ,

fk(θ) = Pk−1(cos θ, sin θ), where k = n, n+ 2m,n+ 3m.

Finally the proof of item (b)-(iii) follows from the computation of a kind
of Lyapunov quantities associated to r = 0. In this latter case, it is not
known if there is some upper bound for the number of limit cycles of the
differential equation.
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[78] Gray, J., Poincaré Replies to Hilbert: On the Future of Mathematics ca. 1908,
Math. Intelligencer 34 (2012), 15–29.

[79] Han, M., Li, C., and Li, J., Limit cycles of planar polynomial vector fields, Schol-
arpedia 5(8):9648, revision #137138.

[80] Harko, T. and Mak, M. K., Relativistic dissipative cosmological models and Abel
differential equation, Comput. Math. Appl. 46 (2003), 849–853.

[81] Hille, E., Ordinary Differential Equations in the Complex Domain, Reprint of the
1976 original. Dover Publications, Inc., Mineola, NY, 1997.

[82] Hirsch, M. W. and Smale, S., Differential Equations, Dynamical Systems, and
Linear Algebra, Pure and Applied Mathematics, Vol. 60. Academic Press, New York-
London, 1974.

[83] Houzel, C. The Work of Niels Henrik Abel, The Legacy of Niels Henryk Abel-The
Abel Bicentennial, Oslo 2002, Springer-Verlag 2004.

[84] Huang, J., Torregrosa, J., and Villadelprat, J., On the number of limit
cycles in generalized Abel equations, SIAM J. Appl. Dyn. Syst. 19, No. 4 (2020),
2343–2370.

[85] Ikeuchi, S. and Tomita H., Cyclic phase changes of interstellar medium, Publ.
Astron. Soc. Japan 35 (1983), 77–86.

[86] Il’yashenko, Yu, Finiteness theorems for limit cycles, Uspekhi Mat. Nauk 45
(1990), no. 2(272), 143–200 (in Russian); translated to English in Russian Math.
Surveys 45 (1990), 129–203.

[87] Il’yashenko, Yu, Centennial history of Hilbert’s 16th problem, Bull. Amer. Math.
Soc. (N.S.) 39 (2002), 301–354.

[88] Isaacson, E. and Keller, H. B., Analysis of Numerical Methods, Wiley and Sons,
1966.

[89] Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, in German,
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