ON THE LIMIT CYCLES OF 3-DIMENSIONAL PIECEWISE LINEAR DIFFERENTIAL SYSTEMS

TING CHEN ${ }^{1,2}$ AND JAUME LLIBRE ${ }^{2, *}$

Abstract

We deal with a three-parameter family of symmetric piecewise linear differential systems with respect to the origin of \mathbb{R}^{3} which appears in control theory. For this family we conjecture the existence and uniqueness of a symmetric limit cycle.

1. Introduction and statement of the main results

A class of differential systems which are relevant in control theory are the Lur'e systems which are symmetric piecewise linear differential system of the form

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{b} \varphi\left(\mathbf{c}^{T} \mathbf{x}(t)\right) \tag{1}
\end{equation*}
$$

here \mathbf{A} is a $n \times n$ constant matrix, \mathbf{b} and \mathbf{c} are given vectors in \mathbb{R}^{n}, and the input function $\varphi\left(\mathbf{c}^{T} \mathbf{x}(t)\right)$ is the feedback of the output $\mathbf{c}^{T} \mathbf{x}(t)$ through the nonlinear continuous function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
\varphi(\sigma)=\sigma \text { for }|\sigma| \leq 1, \quad \varphi(\sigma)=\operatorname{sgn}(\sigma) \text { for }|\sigma|>1 \tag{2}
\end{equation*}
$$

For additional information on the Lur'e systems see for instance $[1,3,5,7,9]$.
We shall restrict systems (1) to \mathbb{R}^{3}, so that $\mathbf{x}(t)=(x(t), y(t), z(t)) \in \mathbb{R}^{3}$, and without loss of generality we assume that $\mathbf{c}=(1,0,0)^{T}$.

Due to the definition of the function φ the space \mathbb{R}^{3} is divided into three zones L, C and R separated by the two planes P_{-}and P_{+}, where

$$
\begin{aligned}
& L=\left\{(x, y, z) \in \mathbb{R}^{3}: x<-1\right\} \\
& P_{-}=\left\{(x, y, z) \in \mathbb{R}^{3}: x=-1\right\} \\
& C=\left\{(x, y, z) \in \mathbb{R}^{3}:-1<x<1\right\} \\
& P_{+}=\left\{(x, y, z) \in \mathbb{R}^{3}: x=1\right\} \\
& R=\left\{(x, y, z) \in \mathbb{R}^{3}: x>1\right\}
\end{aligned}
$$

So the differential system (1) is a symmetric piecewise linear differential system formed by the following three pieces

$$
\begin{align*}
& \dot{\mathbf{x}}=\mathbf{A x}-\mathbf{b} \text { in } L \cup P_{-} \\
& \dot{\mathbf{x}}=\mathbf{B} \mathbf{x} \quad \text { in } P_{-} \cup C \cup P_{+} \tag{3}\\
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{b} \text { in } P_{+} \cup R
\end{align*}
$$

where $\mathbf{B}=\mathbf{A}+\mathbf{b} \mathbf{c}^{T}$. Since $\varphi(0)=0$ the origin of coordinates is an equilibrium point of system (1).

[^0]
[^0]: 2010 Mathematics Subject Classification. Primary: 34C25, 37G15.
 Key words and phrases. Limit cycles, periodic orbits, piecewise linear differential systems.

