PHASE PORTRAITS OF (2;1) REVERSIBLE VECTOR FIELDS OF LOW CODIMENSION

CLAUDIO BUZZI¹, JAUME LLIBRE² AND PAULO SANTANA³

ABSTRACT. In this paper we classify the phase portraits in the Poincaré disk of the reversible vector fields of type (2;1) of codimension 0, 1 and 2.

1. INTRODUCTION AND MAIN RESULTS

Given two real C^k , $k \ge 1$, functions of two variables $P, Q : \mathbb{R}^2 \to \mathbb{R}$ we define a *planar* C^k *differential system* as a system of the form

(1)
$$\dot{x} = P(x, y), \qquad \dot{y} = Q(x, y),$$

where the dot in system (1) denotes the derivative with respect to the independent variable t. We call the map X = (P, Q) a vector field. If P and Q are polynomials then system (1) is a planar polynomial differential system. In this case we say that system (1) has degree n if the maximum of the degrees of P and Q is n. If n = 1 then system (1) is called a *linear differential* system. This last class of systems is already completely understood (see for instance chapter 1 of [18]). However for $n \ge 2$, that is for nonlinear differential polynomial systems we know very few things. The class of planar polynomial systems with degree $n \ge 2$ is too wide, so it is common to study more specific subclasses and to classify their topological phase portraits. See for instance [1, 8, 10, 11, 24].

In this paper we are concerned with the *reversible vector fields*. Given a C^k vector field X (not necessarily planar) and a C^k diffeomorphism φ : $\mathbb{R}^m \to \mathbb{R}^m$ satisfying $\varphi^2 = id_{\mathbb{R}^m}$ we say that X is φ -reversible of type (m; s), for $s \in \{0, 1, \ldots, m\}$, if

$$D\varphi(z)X(z) = -X(\varphi(z))$$

for all $z \in \mathbb{R}^m$ and $Fix(\varphi) = \{z \in \mathbb{R}^m : \varphi(z) = z\}$ is a s-dimensional manifold. Many types of reversible vector fields have been studied for several authors. For example in [2] all the low codimension singularities of systems (2;0)-type are classified, in [3] all (3;2)-type. In [16,17] there is a study of the quadratic reversible vector fields of type (3;2) on the sphere \mathbb{S}^2 .

²⁰¹⁰ Mathematics Subject Classification. Primary 34C05, 34C14.

Key words and phrases. Reversibility, phase portrait, reversible vector fields, classification of vector fields, Poincaré disk.