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Abstract. A global center for a vector field in the plane is a singular
point p having R2 filled of periodic orbits with the exception of the
singular point p. Polynomial differential systems of degree 2 have no
global centers. In this paper we classify the global nilpotent centers of
planar cubic polynomial Hamiltonian systems symmetric with respect
to the y-axis.

1. Introduction and statement of the results

The notion of center goes back to Poincaré and Dulac, see [13, 4]. They
defined a center for a vector field on the real plane as a singular point having
a neighborhood filled of periodic orbits with the exception of the singular
point. The problem of distinguishing when a singular point is a focus or a
center, known as the focus-center problem started precisely with Poincaré
and Dulac and is still active nowadays with many questions unsolved.

If an analytic system has a center, then it is known that after an affine
change of variables and a rescaling of the time variable, it can be written in
one of the following three forms:

ẋ = −y + P (x, y), ẏ = x+Q(x, y),

called linear type center, which has a pair of purely imaginary eigenvalues,

ẋ = y + P (x, y), ẏ = Q(x, y)

called nilpotent center, and

ẋ = P (x, y), ẏ = Q(x, y)

called linearly zero center, where P (x, y) and Q(x, y) in the previous three
systems are real analytic functions without constant and linear terms defined
in a neighborhood of the origin.

We recall that a global center for a vector field in the plane is a singular
point p having R2 filled of periodic orbits with the exception of the singular
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