THE HILBERT NUMBER OF SOME CLASSES OF DIFFERENTIAL EQUATIONS ON THE TORUS

ALI BAKHSHALIZADEH ${ }^{1}$ AND JAUME LLIBRE ${ }^{2}$

Abstract

In this paper we characterize the maximum number of limit cycles that the following two classes of differential equations $$
\frac{d e^{i \varphi}}{d \theta}=a_{0}(\theta)+a_{1}(\theta) e^{i \varphi}+\ldots+a_{n}(\theta) e^{i n \varphi}
$$ and $$
\frac{d e^{i \varphi}}{d \theta}=\frac{a(\theta)}{a_{0}(\theta)+a_{1}(\theta) e^{i \varphi}+\ldots+a_{n}(\theta) e^{i n \varphi}}
$$ on the torus $\mathbb{S}^{1} \times \mathbb{S}^{1}=\left\{\left(e^{i \alpha}, e^{i \beta}\right) \mid \alpha, \beta \in \mathbb{R}\right\}$ can have in function of the positive integer n, where the functions $a(\theta)$ and $a_{i}(\theta)$ for $i=0,1, \ldots, n$ are continuous 2π-periodic functions.

1. Introduction and statements of the main results

A geometric torus is a surface of revolution created by rotating a circle in three-dimensional space around an axis of rotation that is coplanar with the circle. If there is no contact between the axis of rotation and the circle, the generated surface has a ring shape and is called ring torus. In topology, a ring torus is homeomorphic to the Cartesian product of two circles: $\mathbb{S}_{a}^{1} \times \mathbb{S}_{b}^{1}$. A one way to embed this space into Euclidean space is a ring torus but another way is the Cartesian product of the embedding of \mathbb{S}^{1} in the plane with itself. This produces a geometric object called the Clifford torus. It resides in \mathbb{R}^{4} because each of \mathbb{S}_{a}^{1} and \mathbb{S}_{b}^{1} exist in their own independent embedding spaces \mathbb{R}_{a}^{2} and \mathbb{R}_{b}^{2}, respectively, then the resulting product space will be \mathbb{R}^{4}. Therefore, the Clifford torus can be seen as residing inside the complex coordinate space \mathbb{C}^{2}, since \mathbb{C}^{2} is topologically equivalent to \mathbb{R}^{4}. It is also common to consider the Clifford torus as an embedded torus in \mathbb{C}^{2}. In two copies of \mathbb{C}, we have the following unit circles:

$$
\mathbb{S}^{1}=\left\{e^{i \alpha} \mid \alpha \in \mathbb{R}\right\}, \quad \mathbb{S}^{1}=\left\{e^{i \beta} \mid \beta \in \mathbb{R}\right\}
$$

Now the points of the Clifford torus appears as

$$
\mathbb{S}^{1} \times \mathbb{S}^{1}=\left\{\left(e^{i \alpha}, e^{i \beta}\right) \mid \alpha, \beta \in \mathbb{R}\right\}
$$

As we know the Hilbert 16th problem for the planar real polynomial differential systems is about the existence of a finite upper bound for the maximum number of limit cycles in function of the degree of the polynomial differential system, see [4, 5, 6, 10]. Periodic orbits in polynomial planar differential systems can be isolated or belong to an annulus of periodic orbits. In the isolated case they are called limit cycles. Usually, the maximum of the number of limit cycles is denoted by $H(n)$, and is called the Hilbert number. Then here we extend this problem to the torus. Here the maximum of the number of limit cycles on the torus is denoted by $\mathbb{H}(n)$.

2010 Mathematics Subject Classification. 37G15.
Key words and phrases. Hilbert number, Clifford torus, limit cycle.

