QUADRATIC DIFFERENTIAL SYSTEMS WITH A FINITE SADDLE-NODE AND AN INFINITE SADDLE-NODE $(1,1) S N$ - (B)

JOAN C. ARTÉS
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
E-mail: artes@mat.uab.cat
MARCOS C. MOTA
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13566-590, São Carlos, São Paulo, Brazil, E-mail: coutinhomotam@gmail.com
ALEX C. REZENDE
Departamento de Matemática, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil, E-mail: alexcr@ufscar.br

Our goal is to make a global study of the class $\mathbf{Q s n S N}_{11}$ of all real quadratic polynomial differential systems which have a finite semi-elemental saddle-node and an infinite saddle-node formed by the coalescence of a finite and an infinite singularities. This class can be divided into two different families, namely, $\mathbf{Q s n S N} \mathbf{N 1}_{11}(\mathbf{A})$ phase portraits possessing a finite saddle-node as the only finite singularity and $\mathbf{Q s n S N}_{11}(\mathbf{B})$ phase portraits possessing a finite saddle-node and also a simple finite elemental singularity. Each one of these two families is given by a specific normal form. The study of family $\mathbf{Q s n S N}_{\mathbf{1 1}}(\mathbf{A})$ was done in [Artés et al., 2020b] where the authors obtained 36 topologically distinct phase portraits for systems in the closure $\mathbf{Q s n S N}_{11}(\mathbf{A})$. In this paper we provide the complete study of the geometry of family $\mathbf{Q s n S N}_{11}(\mathbf{B})$. This family modulo the action of the affine group and time homotheties is three-dimensional and we give the bifurcation diagram of its closure with respect to a specific normal form, in the threedimensional real projective space. The respective bifurcation diagram yields 631 subsets with 226 topologically distinct phase portraits for systems in the closure $\overline{\mathbf{Q s n S N}_{\mathbf{1 1}}(\mathbf{B})}$ within the representatives of $\mathbf{Q s n S N}_{\mathbf{1 1}}(\mathbf{B})$ given by a specific normal form. Some of these phase portraits can be proven to have at least 3 limit cycles.
Keywords: Quadratic differential systems; finite saddle-node; finite elemental singularity; infinite saddle-node; phase portraits; bifurcation diagram; algebraic invariants.

