# DYNAMICS OF THE STATIC STAR DIFFERENTIAL SYSTEM FROM THE MATHEMATICAL AND PHYSICAL POINT OF VIEWS 

JOAN CARLES ARTÉS ${ }^{1}$, JAUME LLIBRE ${ }^{1}$ AND NICOLAE VULPE ${ }^{2}$

Abstract. We classify all the topologically non-equivalent phase portraits of the quadratic polynomial differential system

$$
\dot{x}=(1-2 x)(y-x), \quad \dot{y}=y\left(2-\gamma y-\frac{5 \gamma-4}{\gamma-1} x\right),
$$

in the Poincaré disc for all the values of the parameter $\gamma \in \mathbb{R} \backslash\{1\}$.
The differential system

$$
\frac{d x}{d t}=y-x, \quad \frac{d y}{d t}=\frac{y}{1-2 x}\left(2-\gamma y-\frac{5 \gamma-4}{\gamma-1} x\right),
$$

when the parameter $\gamma \in(1,2]$ models the structure equations of a static star in general relativity in the case of the existence of a homologous family of solutions, being $x=m(r) / r$ where $m(r) \geq 0$ is the mass inside the sphere of radius $r$ of the star, $y=4 \pi r^{2} \rho$ where $\rho$ is the density of the star, and $t=\ln (r / R)$ where $R$ is the radius of the star. We classify the possible values of $m(r) / r$ and $4 \pi r^{2} \rho$ when $r \rightarrow 0$.

## 1. Introduction and the main results

The structure equations of a static star in general relativity in the case of the existence of a homologous family of solutions are

$$
\begin{align*}
\dot{x} & =y-x \\
\dot{y} & =\frac{y}{1-2 x}\left(2-\gamma y-\frac{5 \gamma-4}{\gamma-1} x\right) \tag{1}
\end{align*}
$$

where the parameter $\gamma$ varies in the interval $(1,2]$, and the dot denotes derivative with respect to the variable $t=\ln (r / R)$ being $R$ the radius of the star. Therefore, from the physical point of view we are interested in the solutions defined in the interval $t \in(-\infty, 0)$. Here $x=m(r) / r$ where $m(r) \geq 0$ is the mass inside the sphere of radius $r$ of the star, $y=4 \pi r^{2} \rho$ being $\rho$ the density of the star. For more details on the differential system (1) see $[3,4,5,7,8,9]$.

We remark that from the physical point of view and since $x>0$ and $y>0$ we are mainly interested in the dynamics of the differential system (1) with $\gamma \in(1,2]$ in the set $Q^{*}$ formed by the positive quadrant $Q=\left\{(x, y) \in \mathbb{R}^{2}\right.$ : $x>0, y>0\}$ of $\mathbb{R}^{2}$ without the straight line $x=1 / 2$ where the differential system (1) is not defined.

[^0]Key words and phrases. Static star, polynomial vector fields, evolution.


[^0]:    2010 Mathematics Subject Classification. 34C05.

