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Abstract. In this paper we improve, by almost doubling, the existing
lower bound for the number of limit cycles of the family of complex
differential equations with three monomials, ż = Azkz̄l + Bzmz̄n +
Czpz̄q, being k, l,m, n, p, q non-negative integers and A,B,C ∈ C. More
concretely, if N = max(k+l,m+n, p+q) and H3(N) ∈ N∪{∞} denotes
the maximum number of limit cycles of the above equations, we show
that for N ≥ 4, H3(N) ≥ N − 3 and that for some values of N this new
lower bound is N +1. We also present examples with many limit cycles
and different configurations. Finally, we show that H3(2) ≥ 2 and study
in detail the quadratic case with three monomials proving in some of
them non-existence, uniqueness or existence of exactly two limit cycles.

1. Introduction and Main Results

In this paper we study lower bounds for the number of limit cycles of
complex differential equations with three monomials,

ż = Azkz̄l +Bzmz̄n + Czpz̄q,

with k, l,m, n, p, q non-negative integers and A,B,C ∈ C. Let N = max(k+
l,m + n, p + q) and denote by H3(N) ∈ N ∪ {∞} the maximum number of
limit cycles of the above equations.

It is known that when ABC = 0 then the maximum number of limit
cycles is 1, see [1]. It is also known that for N ≥ 3 odd, H3(N) ≥ (N +3)/2,
see [17]. Moreover, in the given differential equations reaching these bounds,
each one of these limit cycles surrounds a different critical point. In fact,
in [10] one more limit cycle is proved to exist and it surrounds all the other
limit cycles, showing that H3(N) ≥ (N + 3)/2 + 1.

In this work, we prove that the existing lower bound can in fact be almost
doubled, see next Theorems A and B. Moreover, while the essential tech-
niques used in [17] are the rotational symmetries and the Abelian integrals,
in this paper we also use the computation of the Lyapunov quantities and
the properties of the transformation w = zn.

As a matter of fact, we need to compute in many situations the first
Lyapunov quantity, L1, for a weak focus that is not in the usual normal
form, namely ż = αiz + O2(z, z̄), with 0 ̸= α ∈ R. For this reason we
have decided to include an appendix where L1 is given in full generality.
The expression that we obtain coincides with the one of the classical book
[2, p. 253] attributed to Bautin. Moreover, for the sake of completeness,
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2 M.J. ÁLVAREZ, B. COLL, A. GASULL, AND R. PROHENS

we present both its real and complex expressions, see Theorems D and E
in that appendix, together with a version of the classical Andronov–Hopf
bifurcation theorem. The Lyapunov quantities L2 and L3 are also computed
in some examples.

Next three statements collect our results on H3(N) for arbitrary N.

Theorem A. For N ≥ 4 there exist differential equations of degree N
with three monomials having at least N − 3 limit cycles, each one of them
surrounding one critical point, that is H3(N) ≥ N − 3.

Next result slightly improves the previous lower bound but only for a
sequence of values of N tending to infinity.

Theorem B. For j ≥ 1 there exist differential equations of degree N = 4j−1
with three monomials having at least N + 1 limit cycles, each one of them
surrounding one critical point. Hence, for these values of N, H3(N) ≥ N+1.

In the two previous results, each of the existing limit cycles surrounds a
single different critical point. To show that there are other different config-
urations with many limit cycles we prove next result:

Proposition 1.1. (i) For j ≥ 1 there exist differential equations of degree
N = 3j − 1 with three monomials having at least 2(N + 1)/3 limit cycles.
In this case, for j different critical points there exist two nested limit cycles
surrounding each one of them.

(ii) For j ≥ 1 there exist differential equations of degree N = 4j − 1 with
three monomials having at least 3(N + 1)/4 limit cycles. In this case, for j
different critical points there exist three nested limit cycles surrounding each
one of them.

Its proof is based on similar ideas to those of the previous theorems but
needs as a starting point the computations of the first three Lyapunov quan-
tities, L1, L2 and L3 of a quadratic or a cubic 3-monomial equation (the case
j = 1 of both items of our proposition) having a critical point that is not the
origin. As we will see, these equations act as seeds for the results of higher
degrees.

While we have not been able to prove that the maximum number of small
amplitude limit cycles bifurcating from a weak focus for the differential
equations (3.1) is three, we believe this assertion to be true. The proof
provided in item (ii) of the aforementioned proposition establishes that at
least three small amplitude limit cycles do appear for N = 4j − 1, j ≥ 1.

As a second part of this work we focus our attention on the case N = 2.
It is known that the study of the limit cycles of any planar quadratic system
(QS) can be reduced to the 4-monomial differential equation

ż = Rz +Az2 +Bzz̄ + Cz̄2, (1.1)

with R,A,B,C ∈ C, see for instance [7]. Moreover, it is known that QS can
have at least four limit cycles, see [4, 22]. Because of the extreme difficulty
that this problem entails, we will focus on QS with 3 monomials.

There are
(
6
3

)
= 20 families of QS having 3 monomials. Among them, it is

well-known that the linear equations, ż = A+Bz+Cz̄, and the homogeneous
QS, ż = Az2 + Bzz̄ + Cz̄2 do not have limit cycles. Hence it remains to
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study 18 families of QS, 9 of them with exactly one non-linear term and 9
with exactly two non-linear terms. Our results about their number of limit
cycles are summarized in next theorem.

Theorem C. Consider the differential equations

ż = AM1 +BM2 + CM3,

with A,B,C ∈ C and M1,M2 and M3, are 3 different fixed monomials, Mj ∈
{1, z, z̄, z2, zz̄, z̄2}. Then their number of limit cycles are given in Tables 1
and 2. In both tables, when an integer number ℓ appears it means that the
full family with the corresponding 3 monomials has at most ℓ limit cycles,
taking into account their multiplicities, and moreover there are equations in
this family with exactly ℓ nested hyperbolic limit cycles. If it appears the
expression ≥ ℓ, it means that ℓ nested hyperbolic cycles do appear but it is
not proved that ℓ is the upper bound. Finally, if it is written 1 + 1, then it
means that we are in the first situation with ℓ = 2 but that the two limit
cycles are not nested.

Monomials 1, z 1, z̄ z, z̄

z2 0 ≥ 1 ≥ 1

zz̄ 1 1 1

z̄2 0 0 0

Table 1. Number of limit cycles for QS with three mono-
mials, one of them being quadratic.

Monomials z2, zz̄ z2, z̄2 zz̄, z̄2

1 1 + 1 1 + 1 1 + 1

z ≥ 1 ≥ 2 ≥ 1

z̄ ≥ 1 ≥ 1 ≥ 1

Table 2. Number of limit cycles for QS with three mono-
mials, two of them being quadratic.

Next corollary is a straightforward consequence of Theorems B and C.

Corollary 1.2. It holds that H3(2) ≥ 2 and H3(3) ≥ 4.

Remark 1.3. In Lemma 3.8 we have also proved that the maximum number
of limit cycles of both families

ż = A+Bz̄ + Cz2 and ż = Az +Bz̄ + Cz2

coincide. As a consequence, the full case of 3-monomial QS with only one
non-linear monomial showed in Table 1 would be totally solved if we were
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able to complete the study of the differential equation ż = Az +Bz̄ + Cz2.
We think that the maximum number of limit cycles for this family is one but
for the moment we only know that this fact holds when |B| ≤ |Re(A)|/2,
see [17, Thm. B] and in some cases corresponding to the ones treated in
item (v) of Proposition 3.11. In Section 3.4 we present that proposition and
some more insights on this equation.

We suspect that H3(2) = 2 but all our attempts to prove this or to find
more than 2 limit cycles have been unsuccessful. In Section 3.5, we present
several approaches to obtaining limit cycles. Specifically, we emphasize that
the study of Melnikov functions up to order 6 for the perturbation of ż = iz
yields at most 1 limit cycle around the origin for each of the 3-parameter
families, as detailed in Proposition 3.12. Furthermore, we have investigated
the first-order perturbations with three different monomials of the equation
ż = iz + z2, which possess two simultaneous centers. From this study, we
prove that only 1 limit cycle appears from one of the two centers, as discussed
in Subsection 3.5.2.

2. Proof of Theorems A and B

Proof of Theorem A. For each integer j ≥ 1, let us consider next 3-monomials
differential equation of degree N = j + 3 ≥ 4,

ż = (A+B)z −Azj+1 −Bzj+2z̄ = Az(1− zj) +Bz(1− z̄zj+1), (2.1)

being A = j +1+ a+ i and B = −j + i. The critical points of this equation

are z = 0 and the points z = ws such that wj
s = 1 for s = 1, . . . , j.

Let ws be a critical point of Equation (2.1), s = 1, . . . , j. Observe that this

equation is invariant by the change of the dependent variable u = wj−1
s z for

all s = 1, . . . , j. By this change, the critical point ws of the original equation
is transformed into the critical point u = 1. Hence, varying s we get that all
the critical points ws of the original equation have the same character and
stability as z = 1. Let us study this critical point.

Following the results in [17] we have that

div(X)z=1 = 2Re
( ∂

∂z
F (z, z̄)

)
z=1

= −2ja,

det(dX)z=1 =
∣∣∣ ∂
∂z

F (z, z̄)
∣∣∣2
z=1

−
∣∣∣ ∂
∂z̄

F (z, z̄)
∣∣∣2
z=1

= j|A|2 + j|B|2 + j(j + 1)|A||B| > 0.

Hence, when a ̸= 0 the critical point z = 1 is a strong focus, while if a = 0
it is a weak focus. Let us prove that L1 ̸= 0. In order to apply Theorem E
of the Appendix to compute its first Lyapunov quantity L1, we perform the
translation w = z − 1 and change the sign of the vector field (t → −t),
arriving to the differential equation

ẇ = −(A+B)(w + 1) +A(w + 1)j+1 +B(w + 1)j+2(w̄ + 1).

We can now apply Theorem E. After many computations we get

L1 =
(5 + 2j − j2)j3

9j2 + 8j + 3
.
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Notice that L1 > 0 for j = 1, 2, 3 and L1 < 0 for j ≥ 4. Hence, because of
the change of time, we know that the point z = 1 of Equation (2.1) is an
attractor when j ≤ 3, and a repellor otherwise.

Using Corollary 3.13 in the Appendix, we also know the existence of an
Andronov–Hopf bifurcation by moving slightly the parameter a and taking
it with the suitable sign. One gets a hyperbolic limit cycle born from the
critical point (1, 0) of the original Equation (2.1). As this equation has a
j−symmetry, from each one of the j non-zero critical points of Equation
(2.1), a limit cycle is born at the same time. Thus, the equation has at least
j = N − 3 hyperbolic limit cycles for each j ∈ N. The limit cycles exist for
|a| small enough: when a < 0 and j = 1, 2, 3 they are stable, while when
a > 0 and j ≥ 4 they are unstable. □

Proof of Theorem B. We start proving the result for N = 3. As we will see
this result will be a seed for proving all the other cases.

Let us consider the following cubic equation that posses a symmetry, with
respect the origin, of order 4:

ż = Az +Bz2z̄ + Cz̄3.

As it was proved in [25], the previous equation can have four limit cycles,
that is N + 1, each one surrounding one critical point. In order to be self-
contained, we are going to explain briefly how to produce these four limit
cycles. We consider A = −B−C, B = b1 +5i and fix C = 1− i/2. Then we
get that the non-zero critical points of the equation are located at 1, i,−1,−i.
As the equation has a symmetry of order four, it is enough with studying
one of the critical points. The divergence at z = 1 is 2(b1 − 1). Hence to
have a weak focus at this point we impose that b1 = 1. Moreover it is easy
to see that it has index +1. In order to generate a limit cycle from it we
apply Theorem E to obtain its first Lyapunov quantity. First we move the
critical point at z = 1 to the origin. After some computations we obtain
that L1 = −576/71. Hence, we are under the hypotheses of the classical
Andronov–Hopf bifurcation (see Corollary 3.13) and for |b1−1| small enough
and b1 − 1 > 0 the differential equation has a limit cycle surrounding z = 1.
Hence, by its symmetry, the original equation has four limit cycles, each one
surrounding one of its critical points.

Observe that these limit cycles, as they are born by an Andronov–Hopf
bifurcation, can be as small as we want. As a consequence, we can fix the
b1 parameter in the original equation in such a way that there exist the four
limit cycles, and they are as close as we wish to its corresponding critical
point.

To consider the general case N = 4j − 1, j ≥ 1, we perform the non-
invertible transformation z = uj and the change of time dt/ds = (uū)j−1.
With these changes, Equation (2.1) becomes

u′ =
du

ds
=

A

j
uj ūj−1 +

B

j
u2j ū2j−1 +

C

j
ū4j−1.

Observe that because of the form of the transformation, each one of the
original critical points is transformed into j critical points. Observe also
that these critical points cannot coincide because they are the j−roots of
the angles απ/2, with α ∈ {0, 1, 2, 3}. The same happens with the j limit
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cycles because each one of them surrounds and is very close to the critical
point from which it has born. Hence, the new equation has 4j critical points,
each one of them surrounded by a single limit cycle. Thus, it has 4j = N+1
limit cycles and the result is proved. □

In order to prove item (i) (resp. item (ii)) of Proposition 1.1, we are going
to use the same idea as before but we will choose as a seminal equation a
quadratic (resp. cubic) one having two (resp. three) limit cycles surrounding
one critical point.

Proof of Proposition 1.1. (i) We start with Equation (3.1), studied in the
forthcoming Proposition 3.1:

ż = Az +Bz2 − (A+B)z̄2,

with some complex values A and B such that it has two limit cycles sur-
rounding the critical point z = 1. If we apply the non-invertible transforma-
tion z = uj and the change of time dt/ds = (uū)j−1, we get the following
equation:

u′ =
du

ds
=

A

j
uj ūj−1 +

B

j
u2j ūj−1 − (A+B)

j
ū3j−1.

It has degree N = 3j − 1 and j critical points located at each of the j-th
roots of the unity. From the symmetry of the transformation and using the
ensuing equation, there exist values of the parameters such that each one of
these critical points has at least two limit cycles surrounding it and hence,
the equations has at least 2j = 2(N + 1)/3 limit cycles.

(ii) Consider the complex differential equation

ż = Az +Bz̄ − (A+B)z3. (2.2)

Notice that z = 1 is one of its critical points. Consider A = a1 + a2i and
B = b1+b2i. The divergence of the vector field at z = 1 is −4a1−6b1. To have
a weak focus at the origin we impose that a1 = −3b1/2. We fix a2 = 2 + a,

b1 =
√

7/2 and b2 = 5 + b, where a and b are small real parameters. It can
be seen that, for these values of the parameters, the point z = 1 is a weak
focus. From Theorem E we obtain L1 and, following the same procedure
and after many computations, we also obtain L2 and L3. It turns out that:

L1 =L1(a, b) = −
√
14

1501
(1527a− 510b) +O2(a, b),

L2 =L2(a, b) = − 3
√
14

13035571751440
(293140117939a+ 746b) +O2(a, b),

L3 =L3(a, b) = −2268
√
14

194275
+O1(a, b),

where notice that the linear parts of L1 and L2 are linearly independent.
We also observe that, in particular, for a = b = 0 the point z = 1 is a weak
focus of order three because L1 = L2 = 0 and L3 < 0. Hence we can choose
a and b small enough, such that L1 < 0, L2 > 0, L3 < 0, and

|L1| ≪ |L2| ≪ |L3|.
In this way two limit cycles bifurcate from the critical point. Finally we
can choose a1 = −3b1/2 + c, obtaining L0 = div(X)z=1 = 4a1 − 6b1 = −4c.
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With this final bifurcation, with c < 0 and |c| small enough, a third limit
cycle is obtained, proving that the cubic Equation (2.2) has three limit
cycles surrounding z = 1. In a few words, we have proved that this equation
exhibits a codimension 3 Andronov–Hopf bifurcation at z = 1.

This proves item (ii) when j = 1, that is N = 3. By the same procedure
used in the proof of item (i), namely by using the transformation z = uj

and the change of time dt/ds = (uū)j−1, we prove the result for all N =
4j − 1. □

3. Proof of Theorem C

Before giving the proof of the theorem we present two preliminary sec-
tions, one about lower bounds of the number limit cycles for QS with three
monomials, and another one containing some upper bounds.

3.1. Lower bounds for the number of limit cycles. In this section
we prove three propositions collecting all the lower bounds that we have
obtained for QS by using Andronov–Hopf type bifurcations.

Proposition 3.1. Consider the complex differential equation

ż = Az +Bz2 − (A+B)z̄2. (3.1)

There exist coefficients A,B ∈ C such that the previous equation has two
limit cycles surrounding the critical point z = 1.

Proof. Observe that z = 1 is a critical point of the equation. Consider
A = a1− 2i and B = b1+4i. The divergence of the vector field at this point
is 2(a1 + 2b1). To have a weak focus at the origin we impose a1 = −2b1 and
to have a point of index +1, |b1| <

√
5.

We want to obtain two limit cycles bifurcating from this point. Hence we
need to compute two Lyapunov quantities L1 and L2 and prove that there
are values of b1 such that L1 = 0 and L2 ̸= 0. From Theorem E it holds that

L1 =
4b1

(
2− b21

)
b21 + 22

.

To compute the second one we skip all the details but we follow the same
procedure developed in the Appendix to obtain L1. See also the Appendix
to know how these two quantities can be used to obtain two limit cycles.
We arrive to

L2 = −
(
96b101 − 3648b81 − 86408b61 + 74640b41 + 913200b21 − 2156000

)
b1(

675b21 + 14850
) (

b61 − 75b21 + 250
) .

Notice that if we write b1 =
√
2 + b, where b is a small parameter, it holds

that

L1

∣∣
b2=

√
2+b

= −2b

3
+O2(b) and L2

∣∣
b2=

√
2+b

=
4

9

√
2 +O1(b).

Hence, by taking b1 =
√
2 + b, with b > 0, and a value of a1 such that

a1 + 2b1 < 0 and moreover |a1 + 2b1| ≪ |b| ≪ 1, we get an equation with
L0 = div(X)z=1 = 2(a1 + 2b1) > 0, L1 < 0 and L2 > 0 and satisfying
|L0| ≪ |L1| ≪ |L2|. Therefore the equation has two limit cycles bifurcating
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from z = 1, by a codimension two Andronov–Hopf bifurcation. For more
details see [6] and its references, and also the Appendix. □

Proposition 3.2. Consider the next families of QS with three monomials

(i) ż = A+Bz2 + Czz̄, (ii) ż = A+Bz2 + Cz̄2, (iii) ż = A+Bzz̄ + Cz̄2.

There exist values of A,B,C ∈ C such that each of the previous QS has two
limit cycles. Moreover, each one of the limit cycles surrounds a different
critical point.

Proof. In all the three cases we take C = −(A + B). Then, z = ±1 are
critical points. These families are symmetric with respect to the origin
(observe that they are invariant by the change (z, t) → (−z,−t)). Hence,
modulus a change of orientation, what happens around z = 1 is the same
that happens around z = −1.

Let us see that for each one of the former cases there is an Andronov–Hopf
bifurcation around z = 1. We will apply Theorem E and Corollary 3.13.

For case (i) we take A = a1−i and B = b1+i. Then div(X)z=1 = 2(b1−a1)
and when a1 = b1 and |b1| < 1 it holds that z = 1 is a weak focus and

L1 =
2b1

(
b21 + 1

)
b21 + 2

.

Hence, perturbing slightly the coefficients, one limit cycle is born from each
of the two foci. Both limit cycles are hyperbolic and they have different
stabilities. Hence, the equation has at least two limit cycles, each one of
them surrounding a different critical point, as we wanted to prove.

In case (ii) we take the same values of A and B. Then, div(X)z=1 = 4b1
and when b1 = 0 and |a1| < 1 it holds that z = 1 is a weak focus and

L1 =
2a1

(
a21 − 1

)
a21 + 2

.

Then the result follows again by Corollary 3.13.
Case (iii) is proved by using the same approach. In this situation we take

A = a1 − i and B = b1 + 2i. Then div(X)z=1 = 2b1 and when b1 = 0 and
again |a1| < 1 it holds that z = 1 is a weak focus and

L1 =
2
(
3− a21

)
a1

a21 + 2
.

Hence, by using again Corollary 3.13 the result follows in this case. □

Next result collects all our achievements obtained by using Andronov–
Hopf type bifurcations.

Proposition 3.3. The following results for 3-monomials QS hold:

(i) The maximum cyclicity of a weak focus is two. Furthermore, this maxi-
mum cyclicity occurs only in Equation (3.1), studied in Proposition 3.1.

(ii) The maximum joint cyclicity of two weak foci is two and when it occurs
one limit cycle bifurcates simultaneously from each of the two weak foci.
Furthermore, this maximum cyclicity occurs only in the families studied
in Proposition 3.2.
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(iii) In 14 of the 18 cases considered in Theorem C, at least one limit cycle
appears by an Andronov–Hopf bifurcation. These are the cases of the
differential equations appearing in Tables 1 and 2 not having associated
a zero.

Proof. Consider any of the 18 differential equations

ż = AM1 +BM2 + CM3, (3.2)

with A,B,C ∈ C and M1,M2 and M3 different monomials and satisfying
Mj ∈ {1, z, z̄, z2, zz̄, z̄2}. When the monomial 1 does not appear, z = 0 is a
critical point and we can easily impose that it is a focus and study its first
Lyapunov quantity by using Theorem E.

When we are interested in studying a non zero critical point z = z0 ̸= 0,
the key point is that it is always possible to make a change of variables of the
form u = Dz, with D ∈ C, in such a way that now the critical point is u = 1.
Equivalently we can assume without loss of generality that A+ B + C = 0
in Equation (3.2). Then, with the translation u = z − 1 the new equation
has the critical point at the origin and we can proceed as in the first case.

In all cases, but the one of item (i), when L1 = 0 we already get a center;
so, at most one limit cycle is generated from the point. Moreover, if we
impose that the QS has two weak focus simultaneously, only the cases of
item (ii) give rise to two simultaneous bifurcations of one limit cycle.

To conclude the proof of case (i), we need to calculate L2 for the entire
family (3.1) and demonstrate that when the divergence at the critical point
vanishes and L1 = L2 = 0, then L3 = 0 as well. This conclusion will
establish that the critical point is a center. This is so because for a weak
focus of a QS, if its first three Lyapunov quantities are zero, then it is indeed
a center, see [3]. We have verified these assertions using the tools outlined in
the Appendix, but for brevity, we have omitted the detailed calculations. □

3.2. Upper bounds for the number of limit cycles. In this section
we include a result on non-existence of limit cycles (Lemma 3.4) and two
theorems (Theorems 3.6 and 3.7) giving an upper bound for the number of
limit cycles for QS with four monomials. These theorems, as we will see,
are adaptations of known results on QS.

This first lemma collects the 3-monomials differential equations without
limit cycles and has a straight proof.

Lemma 3.4. The following families of QS with three monomials do not
have limit cycles:

(i) ż = A+Bz + Cz̄, (ii) ż = A+Bz + Cz2,

(iii) ż = A+Bz̄ + Cz̄2, (iv) ż = A+Bz + Cz̄2,

(v) ż = Az +Bz̄ + Cz̄2, (vi) ż = Az2 +Bzz̄ + Cz̄2,

Proof. Case (i) is trivial because it is an affine differential equation.
The differential equation of case (ii) is holomorphic and it is well-known

that general holomorphic differential equations ż = f(z) do not have limit
cycles, see for instance [12] and their references. A simple proof is to realize

that 1/(f(z)f(z)) is an integrating factor of the equation.



10 M.J. ÁLVAREZ, B. COLL, A. GASULL, AND R. PROHENS

The proof for cases (iii), (iv) and (v) is a straightforward consequence of
Dulac criterion because the respective divergences of the differential equa-
tions are 0, 2Re(A) and 2Re(B) and they either vanish identically or do not
change sign. Hence no limit cycle can appear.

Case (vi) corresponds to a homogeneous QS and it is well-known that
general homogeneous planar vector fields do not have limit cycles because
periodic orbits never appear isolated. Moreover, when the differential equa-
tions are homogeneous of even degree, they do not have periodic orbits. □

The following result is a well-known result on QS. It is due to Coppel and
its proof can be found in [8].

Theorem 3.5 ([8]). Suppose a QS satisfies one of the following conditions:

(1) it has an invariant straight line,
(2) the highest degree terms are proportional,

Then, the QS has at most one limit cycle and when it exists it is hyperbolic.

From this theorem we will obtain two key results to prove the upper
bounds stated in Theorem C.

Next we prove a theorem that presents a family of QS having none or two
limit cycles. This result is due to Suo Guangjian, see [19]. For the sake of
completeness and because it is a work not easily accessible we include here
a proof inspired by the one of the original paper. As we will see, this result
is a consequence of some clever use of several changes of variables and of the
previous well-known Theorem 3.5.

Theorem 3.6 ([19]). The equation ż = A + Bz2 + Czz̄ +Dz̄2 either does
not have limit cycles or it has exactly two limit cycles, γ and −γ. Moreover,
in this latter case they are hyperbolic, with different stabilities and each one
of them surrounds a different critical point.

Although it is not stated in the theorem, in Proposition 3.2 we have
already seen that when one of the parameters B,C,D is zero there are
differential equations of the above form having at least two limit cycles γ
and −γ. As usual, given a subset S of R2, we denote as −S = {−x : x ∈ S}.

Proof of Theorem 3.6. It is convenient to write the equation in (x, y) vari-
ables, where z = x+ yi. It reads as{

ẋ = a+ a2,0x
2 + a1,1xy + a0,2y

2,

ẏ = b+ b2,0x
2 + b1,1xy + b0,2y

2,
(3.3)

where all the involved parameters are real. Obviously we can assume that it
has some critical point, say (x0, y0), because otherwise the theorem is proved
and the system does not have limit cycles. Moreover we can also suppose
that (x0, y0) ̸= (0, 0), because otherwise (a, b) = (0, 0) and the system is
homogeneous and of even degree. As we have mentioned above, it is well-
known that these systems can not have periodic orbits.

In short, the system has a critical point (x0, y0) with for instance x0 ̸= 0.
By introducing the new coordinates X = x/x0, Y = y− y0x/x0, the system
keeps the same form but the critical point is moved to be (X,Y ) = (1, 0).
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By renaming X and Y again as x and y, and keeping the same name for the
parameters, we get that System (3.3) writes as{

ẋ = a− ax2 + a1,1xy + a0,2y
2,

ẏ = b− bx2 + b1,1xy + b0,2y
2.

(3.4)

Before continuing, we remark an interesting property of System (3.4)
that we will use in the sequel. This property is that it is invariant by the
change of variables and time (x, y, t) −→ (−x,−y,−t), or in other words,
that if (x(t), y(t)) is a solution, (−x(−t),−y(−t)) it is also. Hence, its limit
cycles appear in couples and with stabilities interchanged. In fact, we have
already used this property in the proof of Proposition 3.2. In particular, the
following property holds: System (3.3) cannot have only one limit cycle.

When b = 0, System (3.4) is a QS with an invariant straight line, y = 0.
Then by Theorem 3.5 it has at most one limit cycle and hence, as we have
argued above, this fact implies that the systems does not have limit cycles.

Assume now that b ̸= 0. To continue our proof, let us perform a new
change of variables to System (3.4), that keeps the critical point (1, 0) fixed:
X = x − ry, Y = y, with r ∈ R to be determined. Then it writes again as
in (3.4) but with new coefficients. After some computations we obtain that

the new coefficient of Y 2 in Ẋ is

A0,2(r) = br3 − (a+ b1,1) r
2 + (a1,1 − b0,2) r + a0,2.

The polynomial A0,2(r) is cubic and for sure it has a real root. If we take r
as one of its real roots we get that System (3.4) is transformed into{

ẋ = a− ax2 + a1,1xy,

ẏ = b− bx2 + b1,1xy + b0,2y
2,

(3.5)

where for simplicity we keep the old names for the variables and coefficients.
When a = 0 in System (3.5), we can argue as in the case b = 0 above and

prove that the system does not has limit cycles. So it only remains to study
the case a ̸= 0 in System (3.5). By rescaling the time by a suitable constant
we have reduced the proof to study the number of limit cycles of system{

ẋ = 1− x2 + a1,1xy,

ẏ = b− bx2 + b1,1xy + b0,2y
2,

(3.6)

where, once more, we keep the same names for the parameters.
When a1,1 = 0 in System (3.6) again it does not have periodic orbits.

For instance it suffices to note that the first differential equation writes as
ẋ = 1− x2, which clearly does not have periodic solutions. When a1,1 ̸= 0,
by introducing the new variables X = x, Y = a1,1y we arrive to the final
reduced system: {

ẋ = 1− x2 + xy,

ẏ = b− bx2 + b1,1xy + b0,2y
2,

(3.7)

Notice that ẋ
∣∣
x=0

= 1 > 0 and hence the line x = 0 is without contact.
In particular the possible limit cycles of the system are either contained in
x > 0 or in x < 0. Moreover, by the symmetry property explained above
we know that in each of the half planes the number of limit cycles is the
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same. As a consequence the theorem will be demonstrated if we prove that
in x > 0, System (3.7) has at most one limit cycle and that when it exists
it is hyperbolic.

To prove this fact we perform for System (3.7), and in the region x > 0,
a final non-linear change of variables

X = x2, Y = 1− x2 + xy, with inverse x =
√
X, y =

X + Y − 1√
X

,

and a change of time dt/ds = x =
√
X where s is the new time. In these

new variables the system writes as
X ′ = 2XY,

Y ′ = b0,2 + (b− 2 b0,2 − b1,1)X − (2 b0,2 + 1)Y + (−b+ b0,2 + b1,1)X
2

+(2 b0,2 + b1,1 − 1)XY + (b0,2 + 1)Y 2.

(3.8)
Once more we have arrived to a QS with an invariant straight line X = 0.
Hence, by Theorem 3.5, it has at most one limit cycle (which is hyperbolic)
and the desired result holds. □

Theorem 3.7. The equation ż = A+Bz+Cz̄+Dzz̄, has at most one limit
cycle. Moreover, when it exists it is hyperbolic.

Although it is not stated in the theorem, in Proposition 3.3 we have
already seen that when one of the parameters A,B,C is zero there are
differential equations of the above form with D ̸= 0, having at least one
limit cycle.

Proof of Theorem 3.7. By doing a rotation one can always consider that
the parameter D is real. Hence, passing the complex equation to cartesian
coordinates and denoting A = a1 + a2i, B = b1 + b2i, C = c1 + c2i, D = d,
one gets: {

ẋ = a1 + (b1 + c1)x+ (−b2 + c2)y + d(x2 + y2),

ẏ = a2 + (b2 + c2)x+ (b1 − c1)y.

The terms of highest degree of the system are (P2(x, y), Q2(x, y)) = (d(x2+
y2), 0). Applying item (2) of Coppel’s Theorem 3.5 one concludes the result.

□

3.3. Proof of Theorem C. We start proving the results in Table 1. The
zeroes appearing in that table are consequence of the results of Lemma 3.4
concerning the four cases (ii)-(v). The 1’s are a corollary of Theorem 3.7
and Proposition 3.3. The remaining two cases that have the symbol ≥ 1 are
also a consequence of Proposition 3.3.

Let us prove the results in Table 2. The cases of the first row, that have
the symbol 1 + 1, follow from Theorem 3.6. All the other 6 cases are again
consequence of Proposition 3.3.

3.4. On the open cases in Table 1. To completely end the QS case with
three monomials it remains to complete the study of eight of the cases in
Tables 1 and 2. Let us see that the two remaining cases of Table 1 reduce
to a single one.
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Lemma 3.8. The maximum number of limit cycles ℓ1 of the family ż =
A+Bz̄ +Cz2 coincides with the maximum number of limit cycles ℓ2 of the
family ż = Az +Bz̄ + Cz2.

Proof. Let us prove first that ℓ1 ≤ ℓ2. If ż = A + Bz̄ + Cz2 does not have
critical points then, of course, it does not have periodic orbits. Otherwise it
has at least a critical point z = z0. Then A+Bz̄0 + Cz20 = 0. By doing the
change of variables u = z − z0 it holds that

u̇ = ż = a+Bz̄ +Cz2 = A+B(ū+ z̄0) +C(u+ z0)
2 = 2z0Cu+Bū+Cu2.

Since this new differential equation is of the form ż = Az + Bz̄ + Cz2,
although with other values of A, B and C, the result follows.

The proof that ℓ2 ≤ ℓ1 is similar and we skip the details. □

We continue studying the differential equation

ż = Az +Bz̄ + Cz2. (3.9)

Proposition 3.9. Let ℓ ≥ 1 be the maximum number of limit cycles sur-
rounding the origin of any equation of type (3.9) with A,B,C ∈ C. Then
the maximum number of limit cycles of equation (3.9) is 2ℓ.

Proof. If z = 0 is the unique critical point, there is nothing to prove. Other-
wise the differential equation has a second critical point z = z0. The change
of variables given by the involution z = z0 − w switches the critical points
z = 0 and z = z0 and transforms equation (3.9) into

ẇ = (A+ 2Cz0)w +Bw̄ − Cw2.

This equation keeps the same monomials as the original one.
Let z = ζ be one of the critical points of Equation (3.9). As a consequence

of former result, using the hypothesis of this proposition we deduce that the
number of limit cycles surrounding only z = ζ is at most ℓ.

It is well-known that for QS each limit cycle surrounds exactly a single
critical point and that there are at most two nests of limit cycles, see [7].
Hence the maximum number of limit cycles of each Equation (3.9) is 2ℓ. □

Indeed, in [21] the author proves that if a QS has limit cycles surrounding
two different foci, then around one of them the maximum number of limit
cycles is one. By using his result the global upper bound given in Propo-
sition 3.9 could be decreased to be ℓ + 1, but in order to be self-contained
we have preferred to state and prove the above version. In fact, as we have
already said, we believe that the maximum number of limit cycles of this
equation will be ℓ.

Aiming to obtain ℓ we write Equation (3.9) in real variables. After several
changes of variables, and keeping in mind Proposition 3.9, we prove that ℓ is
also the maximum number of limit cycles surrounding the origin of the QS{

ẋ = x+ ay + cx2 + 2xy = P (x, y),

ẏ = x+ by + cx2 + y2 = Q(x, y),
(3.10)

where a, b, c ∈ R, c ≤ 0 and (b − 1)2 + 4a < 0. Notice that the second
inequality ensures that the origin is a critical point of index +1 with complex
eigenvalues. Recall, that for QS these critical points are the only ones that
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can be surrounded by limit cycles. The condition c ≤ 0, appears from the
computations.

Although we have not obtained ℓ, we have some partial results on Sys-
tem (3.10) proving that in some regions of the parameter space the system
has either no limit cycles or it has exactly one, that surrounds the origin.
We will use next well-known proposition that allows controlling the sign of
quadratic polynomials in R[x, y], see [9, pp. 306–308].

Proposition 3.10. Set H(x, y) = px2 + 2qxy + ry2 + 2sx + 2ty + u and
define

∆1 =

∣∣∣∣∣ p q

q r

∣∣∣∣∣ , ∆2 =

∣∣∣∣∣ p s

s u

∣∣∣∣∣ , ∆3 =

∣∣∣∣∣ r t

t u

∣∣∣∣∣ , ∆ =

∣∣∣∣∣∣∣∣
p q s

q r t

s t u

∣∣∣∣∣∣∣∣ .
Then:

(i) H(x, y) > 0 if and only if p > 0,∆1 > 0 and ∆ > 0.
(ii) H(x, y) < 0 if and only if p < 0,∆1 > 0 and ∆ < 0.
(iii) H(x, y) ≥ 0 if and only if p ≥ 0, r ≥ 0, u ≥ 0, ∆1 ≥ 0, ∆2 ≥ 0, ∆3 ≥ 0,

and ∆ ≥ 0.
(iv) H(x, y) ≤ 0 if and only if p ≤ 0, r ≤ 0, u ≤ 0, ∆1 ≥ 0, ∆2 ≥ 0, ∆3 ≥ 0,

and ∆ ≤ 0.

Proposition 3.11. Consider System (3.10) with a, b, c ∈ R and (b− 1)2 +
4a < 0. The following holds:

(i) For c > 0 there are cases with at least two limit cycles surrounding the
origin.

(ii) For c ≤ 0 there are cases with at least one limit cycle surrounding the
origin.

(iii) When c(1 + c) ̸= 0 and the polynomial ry2 + 2ty + u does not change
sign, where

r =
3(1− b− ac)

(1 + c) c
, u =

(
b2 − 1

)
(ac− cb− 1)

2 (1 + c) c2
,

t =
a2c2 − c(bc− 2b+ 2)a+ (1− b)(2bc+ c+ 2)

2(1 + c)c2
,

the system does not have limit cycles.
(iv) When (b − 1)c ̸= 0 and the polynomial ry2 + 2ty + u does not change

sign, where

r =
2(2 + c)(4 + c)

(b− 1)c
, u =

1 + b

c
, t =

(b− a)c2 + (3b+ 1)c+ 4b

(b− 1)c
,

the system does not have limit cycles.
(v) In a certain semialgebraic set (described in the proof) of the parameter

space P ⊂ {(a, b, c) ∈ R3 : (b− 1)2+4a < 0}, which has open interior,
the system has at most one limit cycle, and when it exists, it surrounds
the origin and it is hyperbolic. Moreover, in an open subset of P∩{c <
0} this limit cycle do exist.
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Proof. (i)-(ii) To prove the existence of limit cycles, as in other situations in
this work, we will compute the Lyapunov quantities of the origin and apply
the tools developed in the Appendix.

The divergence at the origin is b+1 and when b = −1 the first Lyapunov
quantities are

L1 =
2 (2− ac)

(
c(1 + a) + 1

)
3a2 − 2a+ 7

,

L2 =
−2 (2− ac) (4 a+ 3)

(a− 1) (5 a2 + 2 a+ 17) (1 + a)2
, L3 = 0.

When 2 − ca = 0 it can be seen that the origin is a center. Moreover,
when b = −1 the hypotheses of the theorem imply that 1 + a < 0. Hence,
when 2− ca ̸= 0 and c ≤ 0 we obtain that L1 ̸= 0 and the origin is a weak
focus of order one. Then, it is easy to see that only a single limit cycle
can bifurcate from the origin. Otherwise, when 2 − ca ̸= 0, 4a + 3 ̸= 0 and
c(a+ 1) + 1 = 0 we get that L1 = 0 and L2 ̸= 0. In this situation, two limit
cycles can bifurcate from the critical point.

To prove items (iii)-(v) we follow the approaches developed in [13, 14] to
look for a Dulac function that is suitable to apply Bendixson–Dulac Theorem
to our system. For any 0 ̸= w ∈ R, and any C1 function V (x, y), we have
that

div
( P (x, y)

|V (x, y)|1/w
,

Q(x, y)

|V (x, y)|1/w
)
=

− sign(V (x, y))Mw(x, y)

w|V (x, y)|1+1/w
, (3.11)

where

Mw(x, y) = Vx(x, y)P (x, y)+Vy(x, y)Q(x, y)−w(Px(x, y)+Qy(x, y))V (x, y).

To apply Bendixson–Dulac Theorem we need the function Mw not to change
sign.

To search for a suitable V, with its corresponding w, that allows to prove
items (iii) and (iv), we try with functions of the form

V (x, y) = d+ ex+ fy + gx2.

After some computations we get that

Mw(x, y) = Nw(x, y)− 2gc(w − 1)x3 − 4g(w − 1)x2y,

where Nw is a quadratic polynomial on x and y. To control the sign of Mw

it is a necessary to cancel its cubic terms. This condition gives us two sets
of plausible requirements:

(I) : w = 1; (II) : g = 0.

Notice that when Mw does not change sign on R2, the divergence neither
does on U := R2 \ {V (x, y) = 0}. Moreover, since

Mw(x, y)|V (x,y)=0 = Vx(x, y)P (x, y) + Vy(x, y)Q(x, y)

does not change sign, the periodic orbits of System (3.10) cannot cut the set
{V (x, y) = 0}. Therefore, all the periodic orbits are contained in one of the
connected components of U . Because of the shape of {V (x, y) = 0} all these
connected components are simply connect. Hence System (3.10) will not
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have periodic orbits at all. This follows by applying the usual Bendixson–
Dulac Theorem, with Dulac function |V |−1/w, to each one of them, because
the theorem implies that none of these components can contain periodic
orbits.

To prove our results, let us continue studying each of the cases by imposing
more conditions on w and the parameters of V forcing that the corresponding
Mw does not change sign.

Case (I): Recall that w = 1. Moreover, it is not restrictive to suppose that
g ̸= 0 because, otherwise, we are in case (II). Furthermore, there is no loss
of generality in considering g = 1. With these assumptions we get that

M1(x, y) = (1− b− ec+ fc)x2 + 2 (a− e− fc)xy − 3fy2

+ (f − eb− 2cd)x+ (ea− 4d− f) y − d(b+ 1).

To control the sign of M1 we will apply items (iii) and (iv) of Proposi-
tion 3.10 to H = M1. We impose M1 not to change sign because it is less re-
strictive than imposing it is sign-definite. From condition p = 1−b−ec+fc =
0, when c ̸= 0, we fix f = e+ (b− 1)/c. Then

∆1 = − (1 + a− b− e(1 + c))2 .

Since ∆1 must be non-negative we force that, when 1 + c ̸= 0, ∆1 = 0 by
taking e = (1 + a− b)/(1 + c). Then, some computations give that

∆ =
3 (ac+ b− 1)

(
2 (1 + c) c2d+ (b− 1) (ac− cb− 1)

)2
4 (1 + c)3 c3

.

Imposing ∆ = 0 we fix

d =
(b− 1) (1 + cb− ac)

2 (1 + c) c2
.

Fixing the previous values on d, e and f we have that, in the notation of
Proposition 3.10, p = ∆1 = ∆ = 0. We compute all the other quantities
appearing in that proposition and we obtain:

∆2 = 0, r =
3(1− b− ac)

(1 + c) c
, u =

(
b2 − 1

)
(ac− cb− 1)

2 (1 + c) c2
,

and

∆3 = ru− t2, where t =
a2c2 − c(bc− 2b+ 2)a+ (1− b)(2bc+ c+ 2)

2(1 + c)c2
.

Hence the conditions

r ≥ 0, u ≥ 0 and ∆3 ≥ 0

imply that M1 ≥ 0, and the conditions

r ≤ 0, u ≤ 0 and ∆3 ≥ 0

imply that M1 ≤ 0, as we wanted to prove. Indeed, it holds that

M1(x, y) = ry2 + 2ty + u

and its discriminant 4(t2 − ru) is non-positive.
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Case (II): Recall that g = 0. In this situation we take d = 1 and the
quadratic polynomial of which we have to control the sign is

Mw(x, y) = c (e+ f − 2ew)x2 + (2e− 2cfw − 4ew)xy + (1− 4w) fy2

+ (e+ f − ewb− 2cw − ew)x

+ (ea+ bf − bfw − fw − 4w) y − (b+ 1)w.

By doing similar considerations to those of the previous case, we arrive
at the values of w, f and e that should be taken are

w = −1

c
, f =

2(2 + c)

b− 1
, e =

2c

1− b
.

Then, we get that
Mw(x, y) = ry2 + 2ty + u,

where

r =
2(2 + c)(4 + c)

(b− 1)c
, u =

1 + b

c
and t =

(b− a)c2 + (3b+ 1)c+ 4b

(b− 1)c

and item (iv) is proved.
In order to prove item (v) we follow a similar approach as in the previous

items. We construct a suitable Dulac function, |V (x, y)|−1/w, but this time
with V vanishing at the origin. We will prove that in a semi-algebraic region
P of the parameters, that has open interior, the associated functionMw(x, y)
given in (3.11) does not change sign. As a consequence, we will prove that
in P, the system will have at most one limit cycle. Furthermore, we will
show that at some points of the interior of P an Andronov–Hopf bifurcation
takes place and hence, a hyperbolic limit cycle do exist. Let us give some
details.

We consider V (x, y) as:

V (x, y) = −x2 + ay2 + (1− b)xy +
1

q
(v3x

3 + v2x
2y + v1xy

2 + v0y
3),

where

q = (2b2 + 9a− 5b+ 2)(a− b),

v3 = −2
(
2b2 + 3a− 3b+ 1

)
(a− b) c− 4b2 − 12a+ 6b− 2,

v2 =
(
−2b3 + 3ab+ 7b2 + 3a− 7b+ 2

)
(a− b) c

− 2 (b− 2)
(
2b2 + 6a− 3b+ 1

)
,

v1 = 2a (2b− 1) (b− 2) (a− b) c+
(
2b2 + 6a− 3b+ 1

)
(3a+ b− 2) ,

v0 = −2a2 (b− 2) (a− b) c−
(
ab+ 3b2 + 13a− 7b+ 2

)
a.

With this function and w = 1 we compute its associated function M1(x, y),
given in (3.11), and we get:

M1(x, y) =
1

q
(m4x

4 +m3x
3y +m2x

2y2 +m1xy
3 +m0y

4), (3.12)

being mj polynomials in the parameters a, b, c, for j = 1, . . . , 4, that we do
not specify for the sake of shortness. We remark that V (x, y) is constructed
precisely to force thatM1(x, y) is a homogeneous polynomial. This approach
has been suggested to us by our colleague and friend Hector Giacomini.
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As M1(x, y) is a homogeneous polynomial of degree 4, its zero set can
be algebraically computed from the zeroes of M1(1, y), that is a single vari-
able polynomial of degree 4. Indeed, the conditions that characterize when
a polynomial of degree 4 does not change sign are well-known and semial-
gebraic in its coefficients. Hence the conditions for the above polynomial,
M1(1, y), to force that it does not change sign form a semi-algebraic set P,
that is the one introduced in the statement of (v). We omit the explicit
expressions of these inequalities because of their size.

Hence we can apply Bendixson–Dulac theorem for the values of (a, b, c) ∈
P to get an upper bound for the number of limit cycles of the system. To
know which is this upper bound we need to study the shape of each of the
connected components of U = R2\{V (x, y) = 0}, see [13, 14]. To do this, we
study first the shape of V := {V (x, y) = 0}. Notice that in polar coordinates
V (x, y) = V2(θ)r

2 + V3(θ)r
3 = 0, where for j = 1, 2, Vj(θ) are homogeneous

trigonometric polynomials of degree j and, moreover V2(θ) < 0 for all θ,
because (b−1)2+4a < 0. Hence V reduces to be an isolated point, the origin
(r = 0), and the piece (or pieces) of the unbounded curve r = −V2(θ)/V3(θ)
for the values of θ where −V2(θ)/V3(θ) > 0. In any case, this second curve
does not have ovals because the denominator is of degree 3 and changes sign.
As a consequence, all connected components of U are simple connected, but
one, precisely the one having the origin as a hole. Hence, the system, when
(a, b, c) ∈ P, has at most one limit cycle and if it exists, it is in this holey
connected component, surrounds the hole (the origin) and it is hyperbolic.

To end the proof of item (v) we only need to find an open subset of values
(a, b, c) ∈ R3, that is in P ∩ {c < 0} where a limit cycle exists.

For instance, if we take a = −2, b = −1, c = −2, it turns out that

M1(1, y) = −8

3
y4 +

32

3
y3 − 20y2 +

32

3
y − 8

3
.

It is a straightforward computation proving that the previous polynomial is
strictly negative for all values of y ∈ R. The coefficients of M1(1, y) in (3.12)
are rational functions in the parameters a, b, c and moreover, at the point
(a, b, c) = (−2,−1,−2), the function q does not vanish. In particular, these
coefficients are continuous functions at this point. Hence, moving slightly
(a, b, c) in a neighborhood of the point (−2,−1,−2), the corresponding func-
tion M1(x, y) will not change sign. In short, (a, b, c) is in the interior of P.

In order to prove that in the interior of P there exist values of the param-
eters exhibiting an Andronov–Hopf bifurcation, observe that for b = −1,
the divergence of the system is zero and the first Lyapunov quantity for
a = −2, c = −2 is L1 = −12/23. If the parameter b is slightly moved in such
a way that the divergence is positive (that is, b ≳ −1) then a limit cycle
appears by an Andronov–Hopf bifurcation. Moreover, as we have already
proved that in this region of the parameters the function M1(x, y) does not
change sign, this limit cycle is unique and hyperbolic. In short, for each
ε > 0 small enough, (−2,−1 + ε,−2) belongs to the interior of P and for
a whole neighborhood of this point in P our system has exactly one limit
cycle, which surrounds the origin and is hyperbolic.
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Of course, open sets in P with the same property can be constructed
starting at points (a,−1, c) where the system has a weak focus of order one
(L1 ̸= 0), q ̸= 0, and the corresponding M1(1, y) does not vanish.

We end this proof by illustrating how to determine the boundaries of P in
a particular case. As an example, we study the set P ∩ {(a, b, c) ∈ R2 : a =
c = −2}. For these values of the parameters, the condition (b+1)2+4c < 0 is
equivalent to saying that b ∈ (b−, b+) = (1−2

√
2, 1+2

√
2) ≃ (−1.828, 3.828).

Next we have to characterize whether the polynomialM1(1, y) given in (3.12)
does not change sign. We define Nb(y) as the numerator of M1(y) and, once
more, for simplicity we do not give it explicitly. Following the approach
developed in [11, App. II] we compute the discriminant of the polynomial
Nb with respect to b. We get that it is a polynomial of degree 22 in b, being
one of its factors

4b10 + 88b9 + 417b8 + 139b7 − 3629b6 − 8928b5

− 1393b4 + 19868b3 + 19194b2 − 2635b− 1525.

By computing its Sturm sequence we know that it has has six real zeroes,
being all of them simple. Their approximate values are

b1 ≃ −15.699, b2 ≃ −2.452, b3 ≃ −0.247,

b4 ≃ 0.306, b5 ≃ 1.537, b6 ≃ 2.792.

From these values, and by using [11, Prop 6] we obtain that

P ∩ {(a, b, c) ∈ R2 : a = c = −2} = (b−, b3] ∪ [b5, b6].

Hence, for a = c = −2 and these values of b, which of course include the
value b = −1, the system has at most one limit cycle, which when exists it
is hyperbolic. □

3.5. Other approaches to generate limit cycles for QS. In this section
we try other approaches to get limit cycles for our families. None of them
has provided more limit cycles than the ones given in Theorem C.

3.5.1. Higher order Melnikov functions. Consider a perturbation of a hamil-
tonian system of the form{

ẋ = −Hy +
∑M

j=1 ε
jPj(x, y),

ẏ = Hx +
∑M

j=1 ε
jQj(x, y),

with a center at the origin when ε = 0. We parameterize a transversal
section near the origin by the energy H(x, y) = h, h ∈ (0, h0), where h = 0
corresponds to the origin. For ε small enough the origin keeps being a center
and its return map R writes as

R(h, ε) = h+ ϵkMk(h) +Ok+1(ε),

where Mk is not identically zero and it is called the k-th Melnikov function.
It is known that each simple zero h = h∗ ∈ (0, h0) of Mk gives rise to a
hyperbolic limit cycle for |ε| small enough, that tends to the oval H(x, y) =
h∗ when ε tends to 0, see [5, 18] for more details.

In general, it is konwn that by imposing M1 = .. = Mn−1 = 0 and
studying the number of simple zeroes of Mn, this number increases (or at
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least does not decrease) when n increases and, so does the number of limit
cycles of the family. We will apply this approach to

ż = iz +
6∑

j=1

εjFj(z, z̄) (3.13)

where Fj(z, z̄), j = 1, 2, . . . , 6 are of one of the following forms:

(i) Ajz +Bjz
2 +Cjzz̄, (ii) Ajz +Bjz

2 +Cj z̄
2, (iii) Ajz +Bjzz̄ +Cj z̄

2.

After many computations, following the method proposed in [18] we get
the following result:

Proposition 3.12. The maximum numbers of positive simple zeroes of the
function Mj(h), j = 1, 2, . . . 6, associated to (3.13) are, respectively:

(i) For case (i): 0, 1, 1, 1, 1, 1 zeroes.
(ii) For case (ii): 0, 0, 0, 0, 0, 0 zeroes.
(iii) For case (iii): 0, 0, 0, 1, 1, 1 zeroes.

Hence at most one limit cycle surrounding the origin for Equation (3.13) is
obtained by this approach.

It is worth commenting that doing similar computations but for the com-
plete QS (1.1) the number of limit cycles obtained are: 0, 1, 1, 2, 2, 3, giving
the maximum number of limit cycles known surrounding a critical point of
a QS, see [20].

Notice that although case (ii) does not produce limit cycles around the
origin, the differential equations with these three monomials do have at least
two limit cycles surrounding other critical points, see Table 2.

3.5.2. Perturbation of non-linear centers. A similar approach that in the
previous subsection could be applied by studying perturbations of QS with
two monomials and a center at the origin like for instance:

ż = iz +Bz2, ż = iz +Bzz̄, ż = iz + ib2z̄
2,

where B ∈ C and b2 ∈ R. Although these centers are not hamiltonian they
admit explicit integrating factors, see for instance [15].

We focus our attention on the first case with B = 1, that has simulta-
neously two centers at z = 0 and z = −i, and we study the simultaneous
bifurcation from both sets of periodic orbits. More concretely, we will com-
pute the first order Melnikov functions associated to the period annuli of
z = 0 and z = −i, that we will call M and N , respectively. We will follow
the method developed in [12]

Firstly, we consider the differential equation

ż = iz + z2 + ε
(
A+Bz + Cz̄ +Dz2 + Ezz̄ + F z̄2

)
(3.14)

and, as usual, we write

A =a1 + ia2, B = b1 + ib2, C = c1 + ic2,

D =d1 + id2, E = e1 + ie2, F = f1 + if2,

with the twelve parameters being real constants.
The key point of the computations in [12] is that the birrational trans-

formation w = z/(1 + z) transforms the holomorphic differential equation
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ż = iz + z2 into the linear isochronous center ẇ = iw, and Equation (3.14)
into a rational perturbation of the linear center. In this way, after several
computations, we get the first Melnikov function M associated to the basin
of attraction of z = 0, obtaining that M(ρ) = −2πρ2M(ρ), where

M(ρ) = (c1 + e2) ρ
2 + 2a2 − b1, (3.15)

with 0 < ρ < 1.
Since the change of variables Z = −z− i transforms the differential equa-

tion ż = iz + z2 into Ż = iZ +Z2 and interchanges the critical points z = 0
and z = −i, we can use it to obtain N from M. After some computations
we arrive to N (ρ) = −2πρ2N(ρ), where

N(ρ) = (−c1 + 2f2) ρ
2 + 2a2 − b1 + 2c1 + e2 − 2f2, (3.16)

and again ρ ∈ (0, 1). In this way it is easy to chose the parameters in (3.14)
in such a way that M and N have in (0, 1) either 1 and 0, or 0 and 1, or 1 and
1 simple zeroes, respectively. These results give rise to the configurations 1,
or 1+ 1 for the number of limit cycles of Equation (3.14), recovering known
results about this equation.

We want to particularize the above results when in (3.14) there are only
three monomials. A case by case study shows that the configuration 1 + 1
never appears in these situations, because never both function M and N
have simultaneously 1 zero in (0, 1).

We only detail one of the cases. Consider A = E = F = 0. Then Equa-
tion (3.14) has only the three monomials {z, z̄, z2} and writes as

ż = iz + z2 + ε
(
Bz + Cz̄ +Dz2

)
.

Hence

M(ρ) = c1ρ
2 − b1, N(ρ) = −c1ρ

2 − b1 + 2c1.

Finally, notice that if ρ =
√

b1/c1 is a zero of M in (0, 1) then the zero of

N, that is
√

2− b1/c1, can not be in (0, 1), because 0 < b1/c1 < 1 implies

that
√

2− b1/c1 > 1. In other words, the configuration 1 + 1 never appears
by using the first order Melnikov function for both centers.

Appendix: General expression of the first Lyapunov
quantity L1 and Adronov–Hopf type bifurcations

In Theorems D and E we give, in real or complex coordinates respectively,
the general expression of the first Lyapunov quantity L1 (sometimes also
called V3) of the origin when it is a weak focus but it is not written in
any special normal form. We recover the formula for L1 given in [2, p.
253] calculated by a different method. In that book L1 was obtained by
computing the Taylor’s series of the return map near the origin while our
approach uses a small modification of Lyapunov method.

We thank our colleague and friend Joan Torregrosa who gave us the key
idea to compute L1, and also all subsequent Lj , j ≥ 2, by using a clever
modification of Lyapunov procedure to find a local suitable Lyapunov func-
tion.
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In our proof we will only give some details of how we have obtained L1,
but the same ideas work for any Lj , j ≥ 2. In fact we have prepared a
Maple’s code that obtains several Lj in a fast an efficient way.

Recall that a weak focus is a critical point of index +1 such that the
divergence of the vector field on it is zero.

Theorem D. Consider a C4 planar differential equation defined in a neigh-
borhood of the origin:{

ẋ = ux+ vy +
∑3

j+k=2 aj,kx
jyk +O4(x, y) = P (x, y),

ẏ = wx− uy +
∑3

j+k=2 bj,kx
jyk +O4(x, y) = Q(x, y),

where all the involved parameters are real, w > 0, u2+vw < 0, and O4(x, y)
denotes terms of order at least 4. Then the origin is a weak focus and its
first Lyapunov quantity is

L1 =
L

4u2 + 3v2 − 2vw + 3w2
, (3.17)

where

L =
(
a1,1a2,0 − b0,2b1,1

)
(2u2 − vw)

+
(
a1,1b2,0 − 2a2,0

2 + a2,0b1,1 + 2b0,2b2,0 + b1,1
2
)
uv

+
(
2a0,2a2,0 + a0,2b1,1 + a1,1

2 + a1,1b0,2 − 2b0,2
2
)
uw

− b2,0 (2a2,0 + b1,1) v
2 + a0,2 (a1,1 + 2b0,2)w

2

−
(
2 (a2,1 + b1,2)u− (3a3,0 + b2,1) v + (a1,2 + 3b0,3)w

)
(u2 + vw).

Proof. Before particularizing to our planar system we explain the general
method for obtaining several Lyapunov quantities Lj . Write the differential
system as {

ẋ =
∑N

m=1 Pm(x, y) +ON+1(x, y) = P (x, y),

ẏ =
∑N

m=1Qm(x, y) + +ON+1(x, y) = Q(x, y),

where P1(x, y) = ux + vy, Q1(x, y) = wx − uy, w > 0, u2 + vw < 0, Pm

and Qm are homogeneous polynomials of degree m and N is big enough.
Consider H(x, y) =

∑
k≥2Hk(x, y), where

H2(x, y) = −v

2
y2 − uxy +

w

2
x2,

and Hk are homogeneous polynomials of degree k. Notice that H2 is a first
integral of the linear part of the above system which corresponds to a center
and it is positive definite.

Then the Lyapunov’s method consists in proving that there exist Hk, k ≥
3 (not unique), such that

Hx(x, y)P (x, y) +Q(x, y)Hy(x, y) =

M∑
m=1

Lm(x2 + y2)m+1 +O2M+3(x, y).,

for a suitable M, where recall that HxP +HyQ = Ḣ. Independently of the
choice of the polynomials Hk, the values Lm,m ≥ 1, are called Lyapunov
quantities. Moreover, for general vector fields with a focus at the origin, L0
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is by definition the real part of the eigenvalues associated to the equilibrium
point, and it is a positive multiple of the divergence of the vector field at
the origin. If L0 ̸= 0 its sign gives the stability of the origin.

It is clear by the classical theory of Lyapunov functions that the sign of
the first non-zero Lj , j ≥ 1 also controls the stability of the origin. In fact,
to simplify the computations, the functions Lj are usually reduced, giving
expressions of them when all the previous ones Lk, k < j, vanish, because
only in this situation they have a dynamical meaning.

Moreover, if the system is analytic and all the Lyapunov quantities vanish,
according to the Poincaré’s linearization theorem, it is locally integrable and
the origin is a center, see for instance [23].

Let us start computing L1. Since H2 is already known, the function H3

is determined by imposing that

(H2 +H3)xP + (H2 +H3)yQ = O4(x, y).

Because (H2)xP1 + (H2)yQ1 = 0 we get that H3 has to satisfy

(H3)xP1 + (H3)yQ1 = −(H2)xP2 − (H2)yQ2,

where notice that the right hand side is known and the equality provides
a linear system for the coefficients of H3. It is compatible and determined
and has a unique solution. In fact, H3(x, y) =

∑
j+k=3 hj,kx

jyk where

h3,0 =
u2b2,0 − 2uwa2,0 − uwb1,1 + vwb2,0 − w2a1,1 − 2w2b0,2

3(u2 + vw)
,

h2,1 =
u2a2,0 + u2b1,1 + uwa1,1 + 2uwb0,2 − vwa2,0

u2 + vw
,

h1,2 = −u2a1,1 + u2b0,2 − 2uva2,0 − uvb1,1 − vwb0,2
u2 + vw

,

h0,3 = −u2a0,2 + uva1,1 + 2uvb0,2 − 2v2a2,0 − v2b1,1 + vwa0,2
3(u2 + vw)

.

Now fixed H2 and H3, and following Lyapunov idea, we look for H4 such
that

(H2 +H3 +H4)xP + (H2 +H3 +H4)yQ = L1(x
2 + y2)2 +O5(x, y).

In this case, we need to add a new unknown L1 because without it the linear
system associated to the above equality, with unknowns the coefficients of
H4, would be incompatible. With this trick we obtain several possibilities
for H4 but a given quantity corresponding to L1. This is so, because it can
be seen that the solution of the associated linear system is not unique. By
taking any of the solutions we obtain a good H4 and the expression L1 of
the statement of the theorem. We have preferred to not include the details
due to the length of the involved expressions.

This procedure can be continued if N is big enough and turns out that
the H2k+1 are always uniquely determined while we have some freedom to
choose the H2k. In any case, any choice is good for obtaining useful Lj . □

In next corollary we state the classical Andronov–Hopf bifurcation theo-
rem adapted to our setting.
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Corollary 3.13 (Andronov–Hopf bifurcation). Consider the 1-parametric
family of differential equations{

ẋ = P (x, y) + rx = (u+ r)x+ vy +O2(x, y),

ẏ = Q(x, y) = wx− uy +O2(x, y),

where P and Q are the ones given in Theorem D and r ∈ R. Then, if L is
the expression appearing in that theorem, then:

(i) When r = 0 and L ̸= 0, the weak focus (0, 0) is an attractor (resp. a
repellor) if L > 0 (resp. L < 0).

(ii) If r ̸= 0 the origin is strong focus with non-zero divergence r. Hence
it is an attractor when r < 0 and a repellor when r > 0. Moreover, if
rL < 0 and |r| is small enough, in a sufficiently small neighborhood of
the origin, the system has a unique limit cycle surrounding it, which is
hyperbolic and with opposite stability to the one of the origin.

Remark 3.14. (i) In the statement of Corollary 3.13 the expression L can be
replaced by L1.

(ii) Notice that when the origin is a weak focus written in normal form,
that is u = 0, v = −1, w = 1, then L1 = L/8, where

L = a1,1a2,0 − b0,2b1,1 + a0,2 (a1,1 + 2b0,2)− b2,0 (2a2,0 + b1,1)

+ 3a3,0 + a1,2 + b2,1 + 3b0,3.

The above expression of L, or the one corresponding to u = 0 and v = −w,
are the ones appearing in most text books, see for instance [2].

For completeness we also include some words about more degenerate
Andronov–Hopf type bifurcations because they can give rise to more limit
cycles. Consider a smooth enough parametric family of vector fields, with
parameters λ ∈ Λ ⊂ Rj and having a weak focus at the origin, ẋ = P (x, y, λ),
ẏ = Q(x, y, λ). Compute several Lyapunov quantities, Lj , j ≥ 1, that are
functions of the parameters λ of the family. Moreover, if these functions
satisfy:

(c1) for some m = M ≥ 1 and some λ = λ∗, LM (λ∗) ̸= 0 and Lj(λ
∗) = 0

for all j < M,
(c2) the map defined on a neighborhood of λ = λ∗,

λ → (L1(λ), . . . , LM−1(λ))

fills a complete neighborhood of the origin,
(c3) and we add a new independent real parameter λ0 that controls the

sign of L0, for instance like ẋ = P (x, y, λ) + λ0x, ẏ = Q(x, y, λ),

then this extended family presents a degenerate Andronov–Hopf bifurca-
tion for (λ, λ0) = (λ∗, 0) at the origin. In particular, there are differential
systems in the family having at least M hyperbolic limit cycles in a small
neighborhood of the origin and surrounding it, see for instance [6] and the
references therein.

Next result presents the expression of L1 given in Theorem D when the
initial differential equation is written in complex coordinates.
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Theorem E. Consider a C4 real planar vector differential equation defined
in a neighborhood of the origin:

ż = Rz + Sz̄ +Az2 +Bzz̄ + Cz̄2 +Dz3 + Ez2z̄ + Fzz̄2 +Gz̄3 +O4(z, z̄)

where all the involved parameters are complex, R = r1 + ir2, S = s1 + is2.
When r1 = 0, SS̄ − RR̄ < 0 and Im(R + S) > 0 the origin is a weak focus
and its first Lyapunov quantity is

L1 =
Im(M)

2RR̄+ SS̄
, (3.18)

where

M =
(
2RE − S(3D + F̄ )

)
(RR̄− SS̄) +

(
AB + 2ĀC +BC

)
S̄2

+
(
2AC − 2A2 + ĀB +B2 + B̄C

)
RS̄ −A2(S − S̄)(R− R̄)

−AB
(
2RR̄+ SS̄ + S̄2

)
.

Remark 3.15. (i) Notice that when the origin is a weak focus written in
normal form, that is R = i and S = 0, then L1 = Re(E) − Im(AB), a
well-known and nice expression, see for instance [16].

(ii) In the notation and hypotheses of Theorem D the bifurcation of
Andronov–Hopf happens when instead of r1 = Re(R) = 0 we take |r1| ̸= 0
small enough and Re(R) Im(M) < 0.
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