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Abstract. In this paper we improve, by almost doubling, the existing
lower bound for the number of limit cycles of the family of complex
di↵erential equations with three monomials, ż = Az

k
z̄
l + Bz

m
z̄
n +

Cz
p
z̄
q
, being k, l,m, n, p, q non-negative integers and A,B,C 2 C. More

concretely, if N = max(k+ l,m+n, p+q) and H3(N) 2 N[{1} denotes
the maximum number of limit cycles of the above equations, we show
that for N � 4, H3(N) � N � 3 and that for some values of N this new
lower bound is N +1. We also present examples with many limit cycles
and di↵erent configurations. Finally, we show that H3(2) � 2 and study
in detail the quadratic case with three monomials proving in some of
them non-existence, uniqueness or existence of exactly two limit cycles.

1. Introduction and Main Results

In this paper we study lower bounds for the number of limit cycles of
complex di↵erential equations with three monomials,

ż = Azkz̄l +Bzmz̄n + Czpz̄q,

with k, l,m, n, p, q non-negative integers and A,B,C 2 C. Let N = max(k+
l,m + n, p + q) and denote by H3(N) 2 N [ {1} the maximum number of
limit cycles of the above equations.

It is known that when ABC = 0 then the maximum number of limit
cycles is 1, see [1]. It is also known that for N � 3 odd, H3(N) � (N +3)/2,
see [17]. Moreover, in the given di↵erential equations reaching these bounds,
each one of these limit cycles surrounds a di↵erent critical point. In fact,
in [10] one more limit cycle is proved to exist and it surrounds all the other
limit cycles, showing that H3(N) � (N + 3)/2 + 1.

In this work, we prove that the existing lower bound can in fact be almost
doubled, see next Theorems A and B. Moreover, while the essential tech-
niques used in [17] are the rotational symmetries and the Abelian integrals,
in this paper we also use the computation of the Lyapunov quantities and
the properties of the transformation w = zn.

As a matter of fact, we need to compute in many situations the first
Lyapunov quantity, L1, for a weak focus that is not in the usual normal
form, namely ż = ↵iz + O2(z, z̄), with 0 6= ↵ 2 R. For this reason we
have decided to include an appendix where L1 is given in full generality.
The expression that we obtain coincides with the one of the classical book
[2, p. 253] attributed to Bautin. Moreover, for the sake of completeness,
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