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Abstract. In this paper we classify the phase portraits of the class of planar continuous
piecewise linear differential systems of the form

ẋ = a|x|+ by + c, ẏ = α|x|+ βy + γ,

in the Poincaré disc when aβ − bα ̸= 0.

1. Introduction and statement of the main result

Andronov, Vitt and Khaikin [1] started to study the piecewise linear differential systems in
the 1920s for modelizing some mechanical systems, but the interest on these kind of differential
systems persists up to nowadays. These last twenty years a renewed interest appeared in the
mathematical community working in differential systems for understanding the rich dynamics
of the piecewise linear differential systems, mainly due to the fact these systems modelize very
well many problems coming from mechanics, electronics, economy, ..., look at the survey of
Makarenkov and Lamb [10], the books of di Bernardo, Budd, Champneys and Kowalczyk [2],
and of Simpson [15], and at the hundreds of references cited in such works. While the phase
portraits of the linear differential systems

ẋ = ax+ by + c, ẏ = αx+ βy + γ,

are very well known, the phase portrait of the most easiest class of continuous piecewise linear
differential systems separated by one straight line (that without loss of generality we can assume
that the straight line is x = 0)

(1) ẋ = a|x|+ by + c, ẏ = α|x|+ βy + γ,

with aβ − bα ̸= 0 are unknown. As usual the dot denotes derivative with respect to the
independent variable of the differential system, here called the time t. Note that these piecewise
linear differential systems are analytic in R2 \ {x = 0} and only continuous on the straight line
x = 0. Of course the domain of definition of the piecewise linear differential systems (1) is the
whole plane R2.

The objective of this paper is to classify all the topologically distinct phase portraits of the
differential systems (1) in the Poincaré disc.

Recall that the phase portrait of a differential system is the description of the domain of
definition of the differential system as union of all their orbits, in this way we know where born
the orbits (i.e. their α-limits), or where they die (i.e. their ω-limits), where are their equilibria,
periodic orbits, homoclinic orbits, ..., of course if such kind of orbits exists. In other words
the phase portrait of a differential system provides all the qualitative information about the
dynamics of a differential system.

A phase portrait in the Poincaré disc has the advantage with respect to a phase portrait in
the plane R2 that it controls the orbits which come from or escape to infinity. Roughly speaking
the Poincaré disc D is the closed disc of radius one centered at the origin of coordinates whose
interior has been identified with R2 and its boundary, the circle S1, with the infinity of R2. For
more details on the Poincaré disc see subsection 2.2.
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Our main result is the following one.

Theorem 1. The phase portrait in the Poincaré disc of a continuous piecewise linear differen-
tial system (1) is topologically equivalent to one of the 18 phase portraits described in Figures
7, 8, 9, 10, 12, 14, 16, 17, 18, 21, 22, 23, 28, 30, 38, 40, 48, 50. Moreover, system (1) do not
have limit cycles.

Theorem 1 is proved in sections 3 and 4.

2. Preliminaries

2.1. The normal forms of the differential systems (1). The piecewise linear differential
system (1) depends on six parameters, but we will see that only two parameters are essential.

Since b and β cannot be zero simultaneously, we can assume that b ̸= 0 first. Inspired
in the Proposition 3.1 of the paper [5] we do the diffeomorphism h : R2 → R2 defined by
h(x, y) = (x, βx − by − c) = (X,Y ), which transforms system (1) into the piecewise linear
differential system

(2) Ẋ = (β + a)X − Y, Ẏ = (aβ − bα)X + (cβ − bγ), if X ≥ 0, and

(3) Ẋ = (β − a)X − Y, Ẏ = (bα− aβ)X + (cβ − bγ), if X ≤ 0.

Clearly we can rename the parameters of systems (2) and (3) as follows

(4) Ẋ = āX − Y, Ẏ = d̄X + c̄, if X ≥ 0, and

(5) Ẋ = b̄X − Y, Ẏ = −d̄X + c̄, if X ≤ 0,

where ā = β + a, b̄ = β − a, c̄ = cβ − bγ and d̄ = aβ − bα ̸= 0.

If c̄ = 0, then doing the rescaling (X,Y, t) = (x/|d|, y, t̄/|d|) systems (4) and (5) become

ẋ = âx− y, ẏ = ±x, if x ≥ 0, and

ẋ = b̂x− y, ẏ = ∓x, if x ≤ 0,

where â = ā/|d̄|, b̂ = b̄/|d̄|, now the dot denotes derivative with respect to the new time t̄, the
upper sign takes place when d̄ > 0, and the lower sign takes place when d̄ < 0.

Now we further do the rescaling (X,Y, t) = (c̄x̄/d̄, c̄ȳ/
√
|d̄|, t̄/

√
|d̄|) if c̄d̄ > 0 and systems

(4) and (5) become

(6) ˙̄x = ãx̄± ȳ, ˙̄y = x̄+ 1, if x̄ ≥ 0, and

(7) ˙̄x = b̃x̄± ȳ, ˙̄y = −x̄+ 1, if x̄ ≤ 0,

where ã = ā/
√
|d̄|, b̃ = b̄/

√
|d̄|, and now the dot denotes derivative with respect to the new

time t̄. Moreover, if d̄ > 0 then the signs in (6) and (7) are negative, otherwise they are positive.

When c̄d̄ < 0, using the rescaling (X,Y, t) = (−c̄x̄/d̄, c̄ȳ/
√
|d̄|, t̄/

√
|d̄|), we change systems (4)

and (5) to the following

(8) ˙̄x = ãx̄± ȳ, ˙̄y = −x̄+ 1, if x̄ ≥ 0, and

(9) ˙̄x = b̃x̄± ȳ, ˙̄y = x̄+ 1, if x̄ ≤ 0.

Similarly, if d̄ > 0 then the signs in (8) and (9) are negative, otherwise they are positive.

Assuming that b = 0, we similarly do the diffeomorphism h : R2 → R2 defined as h(x, y) =
(x, βy + γ) = (X,Y ), which transforms system (1) into the piecewise linear differential system

(10) Ẋ = aX + c, Ẏ = β(αX + Y ), if X ≥ 0, and

(11) Ẋ = −aX + c, Ẏ = β(−αX + Y ), if X ≤ 0.

If c = 0, then doing the rescaling (X,Y, t) = (x, y, t̄/|a|) systems (10) and (11) become

ẋ = ±x, ẏ = ǎx+ b̌y, if x ≥ 0, and
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ẋ = ∓x, ẏ = −ǎx+ b̌y, if x ≤ 0,

where ǎ = αβ/|a|, b̌ = β/|a|, now the dot denotes derivative with respect to the new time t̄,
the upper sign takes place when a > 0, and the lower sign takes place when a < 0. Note that
a ̸= 0, otherwise aβ − αb = 0.

If c ̸= 0, doing the rescaling (X,Y, t) = (|c|x/|a|, y, t̄/|a| systems (10) and (11) become

ẋ = ±x± 1, ẏ = ˇ̌ax+ b̌y, if x ≥ 0, and

ẋ = ∓x± 1, ẏ = −ˇ̌ax+ b̌y, if x ≤ 0, .

where ˇ̌a = αβ|c|/|a|2, b̌ = β/|a| and now the dot denotes derivative with respect to the new
time t̄. Note that the signs of a and c determine the signs in front of x and 1 respectively.
More precisely, the upper signs takes place when a > 0 and c > 0 respectively, and the lower
signs takes place when a < 0 and c < 0 respectively. This completes the proof of Table 1.

As we shall see in subsection 2.1 to classify the phase portraits of the piecewise differential
systems (1) is equivalent to classify the phase portraits of the piecewise linear differential
systems of Table 1. Note that piecewise linear differential systems of Table 1 only depend on
two parameters.

2.2. Poincaré compactification. In the proof of Theorem 1 we will use the Poincaré com-
pactification of a planar polynomial vector field X (x, y) = (P (x, y), Q(x, y)) of degree d. The
Poincaré compactification of X , denoted by p(X ), is an induced vector field on S2 = {y =
(y1, y2, y3) ∈ R3 : y21 + y22 + y23 = 1}. We call S2 the Poincaré sphere. For more details on the
Poincaré compactification see [3, Chapter 5]. Here we just introduce what will be needed.

Denote by TpS2 be the tangent space to S2 at the point p. Assume that X is defined in the
plane T(0,0,1)S2 = R2. Consider the central projection f : T(0,0,1)S2 → S2. This map defines

two copies of X , one in the open northern hemisphere H+ and the other in the open southern
hemisphere H−. Denote by X 1 the vector field Df ◦ X defined on S2 except on its equator
S1 = {y ∈ S2 : y3 = 0}. Clearly S1 is identified to the infinity of R2. In order to extend X 1 to a
vector field on S2 (including S1) it is necessary that X satisfies suitable conditions. In the case
that X is a planar polynomial vector field of degree n then p(X ) is the only analytic extension

of yd−1
3 X ′ to S2. On S2 \ S1 = H+ ∪ H− there are two symmetric copies of p(X ), one in H+

and the other in H−, and knowing the behaviour of p(X ) around S1, we know the behaviour
of X at infinity. The Poincaré compactification has the property that S1 is invariant under
the flow of p(X ). The equilibria of X are called the finite equilibria of X or of p(X ), while the
equilibria of p(X ) contained in S1, i.e. at infinity, are called the infinite equilibria of X or of
p(X ). It is known that the infinity equilibria appear in pairs diametrically opposed.

To study the vector field p(X ) we use six local charts on S2 given by Uk = {y ∈ S2 : yk > 0},
Vk = {y ∈ S2 : yk < 0} for k = 1, 2, 3. The corresponding local maps ϕk : Uk → R2 and
ψk : Vk → R2 are defined as ϕk(y) = −ψk(y) = (ym/yk, yn/yk) for m < n and m,n ̸= k. We
denote by z = (u, v) the value of ϕk(y) or ψk(y) for any k, such that (u, v) will play different
roles depending on the local chart we are considering. The points of the infinity S1 in any chart
have v = 0. The expression for p(X) in local chart (U1, ϕ1) is

u̇ = vd
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vd+1P

(
1

v
,
u

v

)
,

in the local chart (U2, ϕ2) is

u̇ = vd
[
−uQ

(
u

v
,
1

v

)
+ P

(
u

v
,
1

v

)]
, v̇ = −vd+1Q

(
u

v
,
1

v

)
,

and in the local chart (U3, ϕ3) is u̇ = P (u, v), v̇ = Q(u, v).

We note that the expression of the vector field p(X) in the local chart (Vi, ψi) is equal to
the expression in the local chart (Ui, ϕi) multiplied by (−1)d−1 for i = 1, 2, 3. Observe that
the points (u, v) of S1, i.e. the points identified with the infinity of the plane R2, in any local
chart have its coordinate v = 0.



4 JIE LI AND JAUME LLIBRE

b ̸= 0

c̄ < 0

d̄ > 0
S+ : ẋ = ãx+ y, ẏ = −x+ 1, if x ≥ 0

(I):
S− : ẋ = b̃x+ y, ẏ = x+ 1, if x ≤ 0

d̄ < 0
S+ : ẋ = ãx− y, ẏ = −x+ 1, if x ≥ 0

(II):
S− : ẋ = b̃x− y, ẏ = x+ 1, if x ≤ 0

c̄ = 0

d̄ > 0
S+ : ẋ = âx− y, ẏ = x, if x ≥ 0

(III):

S− : ẋ = b̂x− y, ẏ = −x, if x ≤ 0

d̄ < 0
S+ : ẋ = âx− y, ẏ = −x, if x ≥ 0

(IV):

S− : ẋ = b̂x− y, ẏ = x, if x ≤ 0

c̄ > 0

d̄ > 0
S+ : ẋ = ãx− y, ẏ = x+ 1, if x ≥ 0

(V):
S− : ẋ = b̃x− y, ẏ = −x+ 1, if x ≤ 0

d̄ < 0
S+ : ẋ = ãx+ y, ẏ = x+ 1, if x ≥ 0

(VI):
S− : ẋ = b̃x+ y, ẏ = −x+ 1, if x ≤ 0

b = 0

c < 0

a > 0
S+ : ẋ = x− 1, ẏ = ˇ̌ax+ b̌y, if x ≥ 0

(VII):
S− : ẋ = −x− 1, ẏ = −ˇ̌ax+ b̌y, if x ≤ 0,

a < 0
S+ : ẋ = −x− 1, ẏ = ˇ̌ax+ b̌y, if x ≥ 0

(VIII):
S− : ẋ = x− 1, ẏ = −ˇ̌ax+ b̌y, if x ≤ 0,

c = 0

a > 0
S+ : ẋ = x, ẏ = ǎx+ b̌y, if x ≥ 0

(IX):
S− : ẋ = −x, ẏ = −ǎx+ b̌y, if x ≤ 0,

a < 0
S+ : ẋ = −x, ẏ = ǎx+ b̌y, if x ≥ 0

(X):
S− : ẋ = x, ẏ = −ǎx+ b̌y, if x ≤ 0,

c > 0

a > 0
S+ : ẋ = x+ 1, ẏ = ˇ̌ax+ b̌y, if x ≥ 0

(XI):
S− : ẋ = −x+ 1, ẏ = −ˇ̌ax+ b̌y, if x ≤ 0,

a < 0
S+ : ẋ = −x+ 1, ẏ = ˇ̌ax+ b̌y, if x ≥ 0

(XII):
S− : ẋ = x+ 1, ẏ = −ˇ̌ax+ b̌y, if x ≤ 0,

Table 1. The 12 normal forms with only two parameters of the piecewise
differential systems (1).
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The orthogonal projection under π(y1, y2, y3) = (y1, y2) of the closed northern hemisphere of
S2 onto the plane y3 = 0 is a closed disc D of radius one centered at the origin of coordinates
called the Poincaré disc. Since a copy of the vector field X on the plane R2 is in the open
northern hemisphere of S2, the interior of the Poincaré disc D is identified with R2 and the
boundary of D, the equator of S2, is identified with the infinity of R2. Consequently the phase
portrait of the vector field X extended to the infinity corresponds to the projection of the phase
portrait of the vector field p(X) on the Poincaré disc D.

By definition the infinite equilibria of the polynomial vector field X are the equilibria of p(X)
contained in the boundary of the Poincaré disc, i.e. in S1, and the finite equilibria of X are the
equilibria of p(X) contained in the interior of the Poincaré disc, which of course coincide with
the equilibria of X in R2.

We remark that the infinite equilibria appear in pairs diametrally opposite on the boundary
of the Poincaré disc.

Note that for studying the infinite equilibria of the piecewise differential system (1) in x ≥ 0
we only need to study the infinite equilibria which are in the local chart U1 and to determine
if the origin of the local chart U2 is or not an equilibrium. While for studying the infinite
equilibria of the piecewise differential system (1) in x ≤ 0 we only need to study the infinite
equilibria which are in the local chart V1 and to determine if the origin of the local chart U2 is
or not an equilibrium.

2.3. Topological equivalence of two polynomial vector fields. Let X1 and X2 be two
polynomial vector fields on R2. We say that they are topologically equivalent if there exists a
homeomorphism on the Poincaré disc D which preserves the infinity S1 and sends the orbits of
π(p(X1)) to orbits of π(p(X2)), preserving or reversing the orientation of all the orbits.

A separatrix of the Poincaré compactification π(p(X)) is one of following orbits: all the orbits
at the infinity S1, the finite equilibria, periodic orbits which are isolated in the set of periodic
orbits at least by one side, when a periodic orbit is isolated in the set of periodic orbits by both
sides it is a limit cycle, and the two orbits at the boundary of a hyperbolic sector at a finite or
an infinite equilibria, see for more details on the separatrices [11, 12].

The set of all separatrices of π(p(X)), which we denote by ΣX, is a closed set (see [12]).

A canonical region of π(p(X)) is an open connected component of D \ΣX. The union of the
set ΣX with an orbit of each canonical region form the separatrix configuration of π(p(X)) and
is denoted by Σ′

X. We denote the number of separatrices of a phase portrait in the Poincaré
disc by S, and its number of canonical regions by R.

Two separatrix configurations Σ′
X1

and Σ′
X2

are topologically equivalent if there is a homeo-
morphism h : D −→ D such that h(Σ′

X1
) = Σ′

X2
.

According to the following theorem which was proved by Markus [11], Neumann [12] and
Peixoto [13], it is sufficient to investigate the separatrix configuration of a polynomial differen-
tial system, for determining its global phase portrait.

Theorem 2. Two Poincaré compactified polynomial vector fields π(p(X1)) and π(p(X2)) with
finitely many separatrices are topologically equivalent if and only if their separatrix configura-
tions Σ′

X1
and Σ′

X2
are topologically equivalent.

2.4. Limit cycles. In 1991-1992 Lum and Chua in [8, 9] conjectured that a continuous piece-
wise linear differential system in the plane with two pieces separated by one straight line has
at most one limit cycle. We note that even in this apparent simple case, only after a difficult
analysis it was possible to prove the existence of at most one limit cycle, thus in 1998 this
conjecture was proved by Freire, Ponce, Rodrigo and Torres in [4]. Recently, a new an easier
proof that at most one limit cycle exists for the continuous piecewise linear differential systems
with two pieces separated by one straight line has been done by Llibre, Ordóñez and Ponce in
[7].
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3. Proof of Theorem 1

The piecewise differential systems (1) with aβ − bα ̸= 0 are topologically equivalent to some
of the 12 piecewise differential systems of Table 1.

If the x-coordinate of an equilibrium is positive (respectively negative), this equilibrium is
real (respectively virtual) for the differential system S+. If the x-coordinate of an equilibrium is
negative (respectively positive), this equilibrium is real (respectively virtual) for the differential
system S−. Of course if the x-coordinate of an equilibrium is zero, then this equilibrium is real
for both differential systems S+ and S−.

3.1. Phase portraits in the Poincaré disc of system (I).

System Conditions Finite Equilibria Infinite Equilibria

(I)

(I-1): ã < −2

P+(stable node) p+(saddle),
p−(unstable node)

P−(saddle) q+(stable node)
q−(unstable node)

(I-2): ã = −2

P+(stable node) p(semi-hyperbolic saddle-node),

P−(saddle) q+(stable node)
q−(unstable node)

(I-3): −2 < ã < 0

P+(stable focus)

P−(saddle) q+(stable node)
q−(unstable node)

(I-4): ã = 0

P+(center)

P−(saddle) q+(stable node)
q−(unstable node)

(I-5): 0 < ã < 2

P+(unstable focus)

P−(saddle) q+(stable node)
q−(unstable node)

(I-6): ã = 2

P+(unstable node) p(semi-hyperbolic saddle-node),

P−(saddle) q+(stable node)
q−(unstable node)

(I-7): ã > 2

P+(unstable node) p+(stable node),
p−(saddle)

P−(saddle) q+(stable node)
q−(unstable node)

Table 2. The local phase portraits at the finite and infinite equilibria of the
piecewise differential system (I).

3.1.1. The finite equilibria. Note that the differential system S+ has the equilibrium P+ =

(1,−ã) . While the differential system S− has the equilibrium P− =
(
−1, b̃

)
. Then the equi-

librium point P+ (respectively P−) is real for the differential system S+ (respectively S−).

The eigenvalues of the equilibrium P+ are λ− := (ã−
√
ã2 − 4)/2 and λ+ := (ã+

√
ã2 − 4)/2.

So if ã ≤ −2 (respectively ã ≥ 2) then λ− < λ+ < 0 (respectively λ+ > λ− > 0), implying that
P+ is a stable (respectively an unstable) node. If −2 < ã < 0 (respectively 0 < ã < 2) then
λ± are a pair of imaginary eigenvalues with negative (respectively positive) real part, implying
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that P+ is a stable (respectively an unstable) focus. If ã = 0 then λ± are a pair of purely
imaginary eigenvalues, implying that P+ is a center.

The eigenvalues of the equilibrium P− are µ− := (b̃−
√
b̃2 + 4)/2 and µ+ := (b̃+

√
b̃2 + 4)/2.

Clearly, µ− < 0 < µ+, implying that P− is a saddle.

3.1.2. The infinite equilibria. We write the differential system S+ in the local charts U1 and
U2. Then in the local chart U1 system S+ writes

(12) u̇ = −1− ãu+ v − u2, v̇ = −ãv − uv;

and in the local chart U2 becomes

(13) u̇ = 1 + ãu+ u2 − uv, v̇ = uv − v2.

We separate the study of the infinite equilibria of system S+ in three cases.

Case (I1+): ã > 2 or ã < −2. Then there are only two infinite equilibria of system S+ in the

local chart U1, namely p± =
(
(−ã±

√
ã2 − 4)/2, 0

)
and the origin of the local chart U2 is not

an infinite equilibrium.

The eigenvalues of the equilibrium p+ are −
√
ã2 − 4 and λp = −(ã +

√
ã2 − 4)/2. If ã > 2

then λp < 0, implying that p+ is a stable node, and if ã < −2 then λp > 0, implying that p+
is a saddle.

The eigenvalues of the equilibrium p− are
√
ã2 − 4 and µp = −(ã −

√
ã2 − 4)/2. If ã > 2

then µp < 0, implying that p− is a saddle, and if ã < −2 then µp > 0, implying that p− is an
unstable node.

Case (I2+): ã = −2 and ã = 2. Then there is only one infinite equilibrium of system S+ in
the local chart U1, namely p = (−ã/2, 0) , and the origin O of the local chart U2 is not an
infinite equilibrium. The eigenvalues of the equilibrium p are 0 and −ã/2 ̸= 0. Therefore by
[3, Theorem 2.19] the infinite equilibrium p is a semi-hyperbolic saddle-node.

Case (I3+): −2 < ã < 2. Then system S+ has no infinite equilibria in the local chart U1 and
at the origin of the local chart U2.

Again we write the differential system S− in the local charts V1 and U2. Then in the local
chart V1 system S− writes

(14) u̇ = 1− b̃u+ v − u2, v̇ = −b̃v − uv;

and in the local chart U2 becomes

(15) u̇ = 1 + b̃u− u2 − uv, v̇ = −uv − v2.

As we did for the system S+, there are only two infinite equilibria of system S− in the local

chart V1, namely q± =
(
(−b̃±

√
b̃2 + 4)/2, 0

)
and the origin of the local chart U2 is not an

infinite equilibrium.

The eigenvalues of the equilibrium q+ are −
√
b̃2 + 4 and λq = −(b̃ +

√
b̃2 + 4)/2. Clearly,

λq < 0, implying that q+ is a stable node. The eigenvalues of the equilibrium q− are
√
b̃2 + 4

and µq = −(b̃−
√
b̃2 + 4)/2. And therefore q− is an unstable node since µq > 0.

In summary from the above discussion, we obtain the results of Table 2.

3.1.3. The global phase portraits in the Poincaré disc. We below give a discussion for passing
from the local phase portraits from all the finite and infinite equilibria to the global phase
portraits in the Poincáre disc.

Note by (12)-(15) that the right hand sides of the equation v̇ both have a common factor v,
implying that the infinity is invariant, i.e, formed by orbits. Besides, we observe that ẋ = y
and ẏ = 1 on the y-axis. Then initiating at points lying on the positive y-axis, all orbits go
into the half plane x ≥ 0 while initiating at points lying in the negative y-axis, all orbits go
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1. b̃ > 0
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Figure
2. b̃ = 0
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Figure
3. b̃ < 0

into the half plane x ≤ 0. On the other hand for system S− there are the horizontal isocline

H : x = −1 and the vertical isocline V : y = −b̃x. More concretely, we see ẏ > 0 on the right
hand side of H, and ẏ < 0 on the left hand side of H. And we get ẋ > 0 in the upper of V, and
ẋ < 0 in the lower of V. So in the four regions divided by H and V, the vector fields are shown
in Figures 1, 2, and 3. According to Table 2, we below discuss the global phase portraits in
the following several cases.

In the case (I-1) one stable separatrix of the saddle P− comes from the unstable node p− and
the second stable separatrix of P− comes from the unstable node q−. One unstable separatrix
of P− goes to the stable node q+ and the second unstable separatrix of P− goes to the stable
node P+. A stable separatrix of the stable node P+ comes from the saddle p+. The remaining
orbits of the phase portrait are determined where they start and where they end by the type
of stability of the equilibria and by the Poincáre-Bendixson theorem (see for instance theorem
1.25 of [1]). Thus the global phase portrait is given in Figure 7.

In the case (I-2) one stable separatrix of the saddle P− comes from the unstable node q−
and the second separatrix of P− comes from the semi-hyperbolic saddle-node p. One unstable
separatrix of P− goes to the stable node q+ and the second unstable separatrix of P− goes
to the stable node P+. A stable separatrix of P+ comes from p. The remaining orbits of the
phase portrait are determined where they start and where they end by the type of stability of
the equilibria and by the Poincáre-Bendixson theorem. Thus the global phase portrait is given
in Figure 8.

In the case (I-3) two stable separatrices of the saddle P− come from the unstable node q−.
One unstable separatrix of P− goes to the stable node q+ and the second unstable separatrix
of P− goes to the stable node P+. The remaining orbits of the phase portrait are determined
by the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the
global phase portrait is given in Figure 9,

In the case (I-4) one unstable separatrix of the saddle P− goes to the stable node q+ while the
other intersects the positive y-axis at A : (0, y1). On the other hand one stable separatrix of P−
comes from the unstable node q− while the other intersects the negative y-axis at A′ : (0, y′1).
Further in the half plane x ≥ 0, initiating from A, we get an arc intersecting the negative y-axis
at B : (0, y2). Thus there are three situations for position of A′: y′1 > y2, y

′
1 < y2 and y′1 = y2,

as shown in Figures 4, 5, and 6. Further we define the two functions

H1(x, y) := (x− 1)2 + y2,

H2(x, y) :=
(
− (x+ 1)

√
4 + b̃2 − b̃+ b̃x+ 2y

(x+ 1)
√
4 + b̃2 + b̃− b̃x− 2y

)b̃
(y2 − (1 + x)2 + b̃(xy − b̃x− y))−

√
4+b̃2 .

We check H1 (respectively H2) is a first integral for system S+ (respectively S−), i.e.,

(∂H1(x, y)/∂x)y − (∂H1(x, y)/∂y)(1− x) = 0
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Figure
4. y′1 > y2

Figure
5. y′1 < y2

Figure
6. y′1 = y2

(respectively (∂H2(x, y)/∂x)(b̃x+ y)− (∂H2(x, y)/∂y)(x+ 1) = 0). Compute

H2(0, 0) = (−1)
−
√

b̃2+4

(
b̃−

√
b̃2 + 4

b̃+
√
b̃2 + 4

)b̃

, lim
x→−1,y→b̃

H2(x, y) = (−1)
−
√

b̃2+4

(
b̃+

√
b̃2 + 4

b̃−
√
b̃2 + 4

)b̃

∞.

Thus if y′1 > y2 then the unstable separatrix goes though the negative y-axis to the stable node
q+ and the stable separatrix goes around the periodic orbit C : (x− 1)2 + y2 = H1(0, 0) = 1. If
y′1 < y2 then the unstable separatrix goes around C and the stable separatrix goes though the
positive y-axis to the unstable node q−. On the other hand C is also a separatrix of the phase
portraits for the both situations. The remaining orbits are determined by the type of stability
of the equilibria and by the Poincáre-Bendixson theorem. Thus the global phase portraits are
shown in Figures 10 and 11 respectively. If y′1 = y2 then the two separatrices coincide, which
means that there is a homoclinic orbit linking with the saddle P−. Clearly some orbits of S+

intersects y-axis and are symmetric with respect to the x-axis. Thus on the y-axis we look for
the values of y such that H2(0, y) = H2(0,−y), i.e.,(
−

√
4 + b2 − b+ 2y√
4 + b2 + b− 2y

)b
(y2 − by − 1)−

√
4+b2 =

(
−

√
4 + b2 − b− 2y√
4 + b2 + b+ 2y

)b
(y2 + by − 1)−

√
4+b2 .

The equality holds for any y if b = 0. It implies that there are filled with periodic orbits inside
the homoclinic orbit. Thus the periodic orbit close to the homoclinic orbit is a separatrix of
the phase portrait. The remaining orbits are determined by the Poincáre-Bendixson theorem
and by the type of stability of the equilibria. Thus the global phase portrait is shown in Figure
12.

In the case (I-5) one stable separatrix of the saddle P− comes from the unstable node q−
and the second stable separatrix of P− comes from the unstable node P+. Two unstable
separatrices of P− goes to the stable node q+. By the Poincáre-Bendixson theorem and by the
type of stability of the equilibria we see the remaining orbits of the phase portrait where they
start and where they end. Thus the global phase portrait is given in Figure 13.

In the case (I-6), one stable separatrix of the saddle P− comes from the unstable node q− and
the second stable separatrix of P− comes from the unstable node P+. One unstable separatrix
of P− goes to the stable node q+ and the second unstable separatrix of P− goes to the semi-
hyperbolic saddle-node p. An unstable separatrix of P+ goes to p. We see the remaining orbits
of the phase portrait by the Poincáre-Bendixson theorem and by the type of stability of the
equilibria. Thus the global phase portrait is shown in Figure 14.

In the case (I-7) one stable separatrix of the saddle P− comes from the unstable node q− and
the second stable separatrix of P− comes from the unstable node P+. One unstable separatrix
of P− goes to the stable node q+ and the second unstable separatrix of P− goes to the stable
node p+. An unstable separatrix of P+ goes to the saddle p−. By the Poincáre-Bendixson
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theorem and by the type of stability of the equilibria we get the remaining orbits of the phase
portrait. Thus the global phase portrait is given in Figure 15.

3.2. Phase portraits in the Poincaré disc of system (II). By (x, y, t) → (−x, y, t), the
system (II) becomes

S+ : ẋ = b̃x+ y, ẏ = −x+ 1, if x ≥ 0, and

S− : ẋ = ãx+ y, ẏ = x+ 1, if x ≤ 0.

This is similar to system (I) by exchanging the position of ã and b̃. So we obtain the phase
portraits in the Poincaré disc for system (II) by reversing the half plane x ≥ 0 and x ≤ 0 for
system (I).

3.3. Phase portraits in the Poincaré disc of system (III).

3.3.1. The finite equilibria. Note that the differential system S+ (respectively S−) has the
equilibrium P+ = (0, 0) (respectively P− = (0, 0)). Namely P− = P+ =: P . Then the
equilibrium P is real for both systems S+ and S−.

The eigenvalues of the equilibrium P+ are λ− := (â−
√
â2 − 4)/2 and λ+ := (â+

√
â2 − 4)/2.

So if â ≤ −2 (respectively â ≥ 2) then λ− < λ+ < 0 (respectively λ+ > λ− > 0), implying that
P+ is a stable (respectively an unstable) node. If −2 < â < 0 (respectively 0 < â < 2) then
λ± are a pair of imaginary eigenvalues with negative (respectively positive) real part, implying
that P+ is a stable (respectively an unstable) focus. If â = 0 then λ± are a pair of purely
imaginary eigenvalues, implying that P+ is a center.

The eigenvalues of the equilibrium P− are µ− := (b̂−
√
b̂2 + 4)/2 and µ+ := (b̂+

√
b̂2 + 4)/2.

Clearly, µ− < 0 < µ+, implying that P− is a saddle.

3.3.2. The infinite equilibria. We write the differential system S+ in the local charts U1 and
U2. Then in the local chart U1 system S+ writes

(16) u̇ = 1− âu+ u2, v̇ = −âv + uv;

and in the local chart U2 becomes

(17) u̇ = −1 + âu− u2, v̇ = −uv.

We separate the study of the infinite equilibria of system S+ in three cases.

Case (III1+): â > 2 or â < −2. Then there are only two infinite equilibria of system S+ in the

local chart U1, namely p± =
(
(â±

√
â2 − 4)/2, 0

)
and the origin of the local chart U2 is not an

infinite equilibrium.

The eigenvalues of the equilibrium p+ are
√
â2 − 4 and λp = −(â −

√
â2 − 4)/2. If â > 2

then λp < 0, implying that p+ is a saddle, and if â < −2 then λp > 0, implying that p+ is an
unstable node.

The eigenvalues of the equilibrium p− are −
√
â2 − 4 and µp = −(â +

√
â2 − 4)/2. If â > 2

then µp < 0, implying that p− is a stable node, and if â < −2 then µp > 0, implying that p−
is a saddle.

Case (III2+): â = −2 and â = 2. Then there is only one infinite equilibrium of system S+

in the local chart U1, namely p = (â/2, 0) , and the origin O of the local chart U2 is not an
infinite equilibrium. The eigenvalues of the equilibrium p are 0 and −â/2 ̸= 0. Therefore by
[3, Theorem 2.19] the infinite equilibrium p is a semi-hyperbolic saddle-node.

Case (III3+): −2 < â < 2. Then system S+ has no infinite equilibria in the local chart U1 and
at the origin of the local chart U2.
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Again we write the differential system S− in the local charts V1 and U2. Then in the local
chart V1 system S− writes

(18) u̇ = −1− b̂u+ u2, v̇ = −b̂v + uv;

and in the local chart U2 becomes

(19) u̇ = −1 + b̂u+ u2, v̇ = uv.

As we did for the system S+, there are only two infinite equilibria of system S− in the local

chart V1, namely q± =
(
(b̂±

√
b̂2 + 4)/2, 0

)
and the origin of the local chart U2 is not an

infinite equilibrium.

The eigenvalues of the equilibrium q+ are
√
b̂2 + 4 and λq = −(b̂ −

√
b̂2 + 4)/2. Clearly,

λq > 0, implying that q+ is an unstable node. The eigenvalues of the equilibrium q− are

−
√
b̃2 + 4 and µq = −(b̃+

√
b̃2 + 4)/2. And therefore q− is a stable node since µq < 0.

In summary from the above discussion, we obtain the results of Table 3.

System Conditions Finite Equilibria Infinite Equilibria

(III)

(III-1): â < −2

P (stable node) p+(unstable node),
p−(saddle)

P (saddle) q+(unstable node)
q−(stable node)

(III-2): â = −2

P (stable node) p(semi-hyperbolic saddle-node),

P (saddle) q+(unstable node)
q−(stable node)

(III-3): −2 < â < 0

P (stable focus)

P (saddle) q+(unstable node)
q−(stable node)

(III-4): â = 0

P (center)

P (saddle) q+(unstable node)
q−(stable node)

(III-5): 0 < â < 2

P (unstable focus)

P (saddle) q+(unstable node)
q−(stable node)

(III-6): â = 2

P (unstable node) p(semi-hyperbolic saddle-node),

P (saddle) q+(unstable node)
q−(stable node)

(III-7): â > 2

P (unstable node) p+(saddle),
p−(stable node)

P (saddle) q+(unstable node)
q−(stable node)

Table 3. The local phase portraits at the finite and infinite equilibria of the
piecewise differential system (III).

3.3.3. The global phase portraits in the Poincaré disc. Similar to system (I), by (16)-(19) we
see that the right hand sides of the equation v̇ both have a common factor v, implying that the
infinity is formed by orbits. Further check ẋ = −y and ẏ = 0 on the y-axis. Then initiating
at points lying on the positive y-axis, all orbits go into the half plane x ≤ 0 while initiating at
points lying in the negative y-axis, all orbits go into the half plane x ≥ 0. On the other hand
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for system S− there are the horizontal isocline H : x = 0 and the vertical isocline V : y = b̂x.
Also for system (16) there are two invariant lines u = (â ±

√
â2 − 4)/2 and for system (18)

there are two invariant lines u = (b̂±
√
b̂2 + 4)/2. According to Table 3, we below discuss the

global phase portraits in the following several cases.

In the case (III-1) one stable separatrix of the stable node P in the half plane x ≥ 0 comes

from the unstable node p+ lying on the line y = ((â +
√
â2 − 4)/2)x and the second stable

separatrix of the stable node P in the half plane x ≥ 0 comes from the saddle p− lying on the
line y = ((â −

√
â2 − 4)/2)x. One stable separatrix of the saddle P in the half plane x ≤ 0

comes from the unstable node q+ lying on the line y = ((b̂ +
√
b̂2 + 4)/2)x and one unstable

separatrix of P goes to the stable node q− lying on the line y = ((b̂ −
√
b̂2 + 4)/2)x. The

remaining orbits of the phase portrait are determined where they start and where they end by
the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the global
phase portrait is shown in Figure 16.

Note that for the remain cases (III-2)-(III-7) the phase portrait is the same as the case (III-1)
in the half plane x ≤ 0. For the half plane x ≥ 0 the phase portrait is studied in what follows.

In the case (III-2) one stable separatrix of the stable node P in the half plane x ≥ 0 comes
from the semi-hyperbolic saddle-node p lying on the line y = (â/2)x. The remaining orbits
of the phase portrait are determined by the type of stability of the equilibria and by the
Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 17.

In cases (III-3)-(III-5) there is no separatrix in the half plane x ≥ 0. The remaining orbits of
the phase portrait are determined by the type of stability of the equilibria and by the Poincáre-
Bendixson theorem. Thus the global phase portraits of these three cases are given in Figures
18.

In the case (III-6) an unstable separatrix of the unstable node P in the half plane x ≥ 0 goes
to the semi-hyperbolic saddle-node p lying on the line y = â/2x. We get the remaining orbits
of the phase portrait by the type of stability of the equilibria and by the Poincáre-Bendixson
theorem. Thus the global phase portrait is shown in Figure 19.

In the case (III-7) one unstable separatrix of the unstable node P in the half plane x ≥ 0 goes

to the saddle p+ lying on the line y = ((â+
√
â2 − 4)/2)x and the second unstable separatrix of

P in the half plane x ≥ 0 goes to the stable node p− lying on the line y = ((â−
√
â2 − 4)/2)x.

We get the remaining orbits of the phase portrait by the type of stability of the equilibria and
by the Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 20.

3.4. Phase portraits in the Poincaré disc of system (IV). Note that by exchanging the

position of â and b̂ then S+ of system (III) is the same that S− of system (IV), while S−
of system (III) is the same that S+ of system (IV). So we obtain the phase portraits in the
Poincaré disc for system (IV) by exchanging the half planes x ≥ 0 and x ≤ 0 of system (III).

3.5. Phase portraits in the Poincaré disc of system (V).

3.5.1. The finite and infinite equilibria. Note that the differential system S+ has the equilibrium
P+ = (−1,−a), while the differential system S− has the equilibrium P− = (1, b). Then the
equilibrium P+ (respectively P−) is virtual for the differential systems S+ (respectively S−).

Doing the change (x, y, t) → (−x, y, t), the system (V) becomes

S+ : ẋ = b̃x+ y, ẏ = x+ 1, if x ≥ 0, and

S− : ẋ = ãx+ y, ẏ = −x+ 1, if x ≤ 0, and.

The system S+ is the same that S− of system (I) while the system S− is the same that S+ of
system (I). So from the results of system (I) for the finite and infinite equilibria of system (V)
we get the Table 4.
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System Conditions Finite Equilibria Infinite Equilibria

(V)

(V-1): ã < −2

P+(stable node) p+(unstable node),
p−(saddle)

P−(saddle) q+(unstable node)
q−(stable node)

(V-2): ã = −2

P+(stable node) p(semi-hyperbolic saddle-node)

P−(saddle) q+(unstable node)
q−(stable node)

(V-3): −2 < ã < 0

P+(stable focus)

P−(saddle) q+(unstable node)
q−(stable node)

(V-4): ã = 0

P+(center)

P−(saddle) q+(unstable node)
q−(stable node)

(V-5): 0 < ã < 2

P+(unstable focus)

P−(saddle) q+(unstable node)
q−(stable node)

(V-6): ã = 2

P+(unstable node) p(semi-hyperbolic saddle-node)

P−(saddle) q+(unstable node)
q−(stable node)

(V-7): ã > 2

P+(unstable node) p+(saddle)
p−(stable node)

P−(saddle) q+(unstable node)
q−(stable node)

Table 4. The local phase portraits at the finite and infinite equilibria of the
piecewise differential system (V).

3.5.2. The global phase portraits in the Poincaré disc. Similar to system (I), we check ẋ = −y
and ẏ = 1 on the y-axis. Then initiating at points lying on the positive y-axis all orbits go into
the half plane x ≤ 0, while initiating at points lying in the negative y-axis all orbits go into
the half plane x ≥ 0. On the other hand the infinity is formed by orbits. According to Table
4, we below discuss the global phase portraits in the following several cases.

In the case (V-1) a separatrix comes from the saddle p− going to the stable node q−. The
remaining orbits of the phase portrait are determined where they start and where they end by
the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the global
phase portrait is given in Figure 21.

In the case (V-2) a separatrix comes from the semi-hyperbolic saddle-node p going to the
stable node q−. By the type of stability of the equilibria and by the Poincáre-Bendixson
theorem we get the remaining orbits of the phase portrait. Thus the global phase portrait is
given in Figure 22.

In the case (V-3)-(V-5), there is no separatrix in the phase portrait. All orbits leave q+ for
q−. Thus the global phase portrait is shown in Figure 23.

In the case (V-6) a separatrix comes from the unstable node q+ going to the semi-hyperbolic
saddle-node p. The remaining orbits of the phase portrait are determined by the type of
stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the global phase
portrait is shown in Figure 24.
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In the case (V-7) a separatrix comes from the unstable node q+ going to the saddle p+.
Similarly we get the remaining orbits of the phase portrait. Thus the global phase portrait is
shown in Figure 25.

3.6. Phase portraits in the Poincaré disc of system (VI). Note that by exchanging the

position of â and b̂ then S+ of system (VI) is the same that S− of system (I), while S− of
system (VI) is the same that S+ of system (I). So we obtain the phase portraits in the Poincaré
disc for system (VI) by exchanging the half planes x ≥ 0 and x ≤ 0 of system (I).

System Conditions Finite Equilibria Infinite Equilibria

(VII)

(VII-1): b̌ < −1

P+(saddle) p(stable node),
O(unstable node)

P−(stable node) q(saddle)
O(unstable node)

(VII-2): b̌ = −1, ˇ̌a < 0

P+(saddle) p(stable node)
O(unstable node)

P−(stable node)
O(semi-hyperbolic saddle-node)

(VII-3): b̌ = −1, ˇ̌a = 0

P+(saddle) p(stable node)
O(unstable node)

P−(stable node) u-axis(starts an orbit)
O(starts an orbit)

(VII-4): b̌ = −1, ˇ̌a > 0

P+(saddle) p(stable node)
O(unstable node)

P−(stable node)
O(semi-hyperbolic saddle-node)

(VII-5): −1 < b̌ < 0

P+(saddle) p(stable node)
O(unstable node)

P−(stable node) q(unstable node)
O(saddle)

(VII-6): 0 < b̌ < 1

P+(unstable node) p(stable node)
O(saddle)

P−(saddle) q(unstable node)
O(stable node)

(VII-7): b̌ = 1, ˇ̌a < 0

P+(unstable node)
O(semi-hyperbolic saddle-node)

P−(saddle) q(unstable node)
O(stable node)

(VII-8): b̌ = 1, ˇ̌a = 0

P+(unstable node) u-axis(ends an orbit)
O(ends an orbit)

P−(saddle) q(unstable node)
O(stable node)

(VII-9): b̌ = 1, ˇ̌a > 0

P+(unstable node)
O(semi-hyperbolic saddle-node)

P−(saddle) q(unstable node)
O(stable node)

(VII-10): (VII-10): b̌ = 1, b̌ > 1

P+(unstable node) p(saddle)
O(stable node)

P−(saddle) q(unstable node)
O(stable node)

Table 5. The local phase portraits at the finite and infinite equilibria of the
piecewise differential system (VII).



15

3.7. Phase portraits in the Poincaré disc of system (VII).

3.7.1. The finite equilibria. Note that b̌ = β/|a| ̸= 0, otherwise aβ − αb = 0 because b = 0
in the case. Then the differential system S+ has the equilibrium P+ =

(
1,−ˇ̌a/b̌

)
. While the

differential system S− has the equilibrium P− =
(
−1,−ˇ̌a/b̌

)
. Moreover the equilibrium P+

(respectively P−) is real for the differential system S+ (respectively S−).

The eigenvalues of the equilibrium P+ are 1 and b̌. So if b̌ > 0 (respectively b̌ < 0) then P+

is an unstable node (respectively a saddle). The eigenvalues of the equilibrium P− are −1 and
b̌. Then P− is a saddle if b̌ > 0 and a stable node if b̌ < 0.

3.7.2. The infinite equilibria. We write the differential system S+ in the local charts U1 and
becomes

(20) u̇ = ˇ̌a+ (b̌− 1)u+ uv, v̇ = −v + v2;

and in the local chart U2 becomes

(21) u̇ = (1− b̌)u− v − ˇ̌au2, v̇ = −b̌v − ˇ̌auv.

We separate the study of the infinite equilibria of system S+ in two cases.

Case (VII1+): b̌ ̸= 1. Then there is only one infinite equilibrium of system S+ in the local chart
U1, namely p =

(
−ˇ̌a/(b̌− 1), 0

)
and the origin O of the local chart U2 is an infinite equilibrium.

The eigenvalues of the equilibrium p are −1 and b̌− 1. Thus p is a stable node if b̌ < 1 and a
saddle if b̌ > 1. The eigenvalues of the equilibrium O are 1− b̌ and −b. Then O is an unstable
node if b̌ < 0, a semi-hyperbolic saddle-node if b̌ = 0, a saddle if 0 < b̌ < 1 and a stable node
b̌ > 1.

Case (VII2+): b̌ = 1. We consider two subcases: ˇ̌a ̸= 0 and ˇ̌a = 0. In the first subcase there is
no infinite equilibrium in the local chart U1 but the origin O of the local chart U2 is an infinite
equilibrium. Moreover the eigenvalues of O are 0 and −1, implying that it is a semi-hyperbolic
saddle-node. In the second subcase all points on the u-axis are infinite equilibria in the local
chart V1 for system S+. Since the eigenvalues at each one of these equilibria are 0 and −1 ̸= 0,
by the normally hyperbolic equilibria theorem (see [6]) it follows that at each one of these
equilibria ends an orbit. The origin of the local chart U2 is also an equilibrium inside the
continuum of equilibria at infinity with eigenvalues 0 and −1, so the same conclusion for it.

Again we write the differential system S− in the local charts V1 and U2. Then in the local
chart V1 system S− writes

(22) u̇ = −ˇ̌a+ (b̌+ 1)u+ uv, v̇ = v + v2;

and in the local chart U2 becomes

(23) u̇ = −(1 + b̌)u− v + ˇ̌au2, v̇ = −b̌v + ˇ̌auv.

As we did for the system S+, We separate the study of the infinite equilibria of system S−
in two cases.

Case (VII1−): b̌ ̸= −1. Then there is only one infinite equilibrium of system S− in the
local chart V1, namely q =

(
ˇ̌a/(b̌+ 1), 0

)
and the origin O of the local chart U2 is an infinite

equilibrium. The eigenvalues of the equilibrium q are 1 and b̌+1. Then q is a saddle if b̌ < −1
and an unstable node if b̌ > −1. The eigenvalues of the equilibrium O are −1 − b̌ and −b.
Then O is an unstable node if b̌ < −1, a saddle if −1 < b̌ < 0, a semi-hyperbolic saddle-node
if b̌ = 0 and a stable node b̌ > 0.

Case (VII2−): b̌ = −1. Again we consider two subcases: ˇ̌a ̸= 0 and ˇ̌a = 0. In the first subcase
there is no infinite equilibrium in the local chart U1 but the origin O of the local chart U2 is
an infinite equilibrium. Moreover the eigenvalues of O are 0 and 1, implying that it is a semi-
hyperbolic saddle-node. In the second subcase all points on the u-axis are infinite equilibria
in the local chart V1 for system S−. Since the eigenvalues at each one of these equilibria are
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0 and 1 ̸= 0, by the normally hyperbolic equilibria theorem each one of these equilibria starts
an orbit. At the origin of the local chart U2 we also have a semi-hyperbolic saddle-node.

In summary from the above discussion, we obtain the results of Table 5.

3.7.3. The global phase portraits in the Poincaré disc. First we see ẋ = −1 on the y-axis. Then
initiating at points lying on the positive y-axis all orbits go into the half plane x < 0. On
the other hand the infinity as always is formed by orbits because the equation v̇ of equations
(20)-(23) has a common factor v. According to Table 5, we divide the study of the global phase
portraits in the following cases.

In the case (VII-1) one stable separatrix of the saddle P+ comes from the unstable node O in
the positive y-direction and the second stable separatrix of P+ comes from the unstable node
O in the negative y-direction. One unstable separatrix of P+ goes to the stable node p and the
second unstable separatrix of P+ goes to the stable node P−. A stable separatrix of P− comes
from the saddle q. The remaining orbits of the phase portrait are determined where they start
and they end by the type of stability of the equilibria and by the Poincáre-Bendixson theorem.
Thus the global phase portrait is shown in Figure 26.

In the case (VII-2) one stable separatrix of the saddle P+ comes from the semi-hyperbolic
saddle-node O in the positive y-direction and the second stable separatrix of P+ comes from the
unstable node O in the negative y-direction. One unstable separatrix of P+ goes to the stable
node p and the second unstable separatrix of P+ goes to the stable node P−. The remaining
orbits of the phase portrait are determined by the type of stability of the equilibria and by the
Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 27.

In the case (VII-3) one stable separatrix of the saddle P+ comes from the unstable node O
in the positive y-direction and the second stable separatrix of P+ comes from the equilibrium
O in the negative y-direction. One unstable separatrix of P+ goes to the stable node p and the
second unstable separatrix of P+ goes to the stable node P−. The remaining orbits of the phase
portrait are determined by the type of stability of the equilibria and by the Poincáre-Bendixson
theorem. Thus the global phase portrait is shown in Figure 28.

In the case (VII-4) one stable separatrix of the saddle P+ comes from the unstable node
O in the positive y-direction and the second stable separatrix of P+ comes from the semi-
hyperbolic saddle node O in the negative y-direction. One unstable separatrix of P+ goes to
the stable node p and the second unstable separatrix of P+ goes to the stable node P−. A stable
separatrix of P− comes from the unstable node O in the positive y-direction. The remaining
orbits of the phase portrait are determined by the type of stability of the equilibria and by the
Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 29.

In the case (VII-5) one stable separatrix of the saddle P+ comes from the unstable node O in
the positive y-direction and the second stable separatrix of P+ comes from the saddle O in the
negative y-direction. One unstable separatrix of P+ goes to the stable node p and the second
unstable separatrix of P+ goes to the stable node P−. One stable separatrix of the saddle P−
comes from the unstable node O in the positive y-direction and the second stable separatrix
of P− comes from the saddle O in the negative y-direction. By the type of stability of the
equilibria and by the Poincáre-Bendixson theorem we get the remaining orbits of the phase
portrait. Thus the global phase portrait is shown in Figure 30.

In the case (VII-6) one stable separatrix of the saddle P− comes from the unstable node q and
the second stable separatrix of P− comes from the unstable node P+. One unstable separatrix
of P− comes from the saddle O in the positive y-direction and the second stable separatrix
of P− comes from the stable node O in the negative y-direction. One unstable separatrix of
the unstable node P+ goes to the saddle O in the positive y-direction and the second unstable
separatrix of P+ goes to the stable node O in the negative y-direction. Similarly we get the
remaining orbits of the phase portrait by the type of stability of the equilibria and by the
Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 31.
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In the case (VII-7) one stable separatrix of the saddle P− comes from the unstable node q and
the second stable separatrix of P− comes from the unstable node P+. One unstable separatrix
of P− goes to the semi-hyperbolic saddle-node O in the positive y-direction and the second
unstable separatrix of P− goes to the stable node O in the negative y-direction. An unstable
separatrix of P+ goes to the semi-hyperbolic saddle-node O in the positive y-direction. The
remaining orbits of the phase portrait are determined by the type of stability of the equilibria
and by the Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 32.

In the case (VII-8) one stable separatrix of the saddle P− comes from the unstable node q and
the second stable separatrix of P− comes from the unstable node P+. One unstable separatrix
of P− goes to the equilibrium O in the positive y-direction and the second unstable separatrix
of P− goes to the stable node O in the negative y-direction. The remaining orbits of the phase
portrait are determined by the type of stability of the equilibria and by the Poincáre-Bendixson
theorem. Thus the global phase portrait is shown in Figure 33.

In the case (VII-9) one stable separatrix of the saddle P− comes from the unstable node
q and the second stable separatrix of P− comes from the unstable node P+. One unstable
separatrix of P− goes to the semi-hyperbolic saddle-node O in the positive y-direction and the
second unstable separatrix of P− goes to the stable node O in the negative y-direction. An
unstable separatrix of P+ goes to the stable node O in the negative y-direction. Similar to the
above, we get the remaining orbits of phase portrait. Thus the global phase portrait is shown
in Figure 34.

In the case (VII-10) one stable separatrix of the saddle P− comes from the unstable node
q and the second stable separatrix of P− comes from the unstable node P+. One unstable
separatrix of P− goes to the stable node O in the positive y-direction and the second unstable
separatrix of P− goes to the stable node O in the positive y-direction. An unstable separatrix
of P+ goes to the saddle p. Similarly we get the remaining orbits of the phase portrait by the
type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the global
phase portrait is shown in Figure 35.

3.8. Phase portraits in the Poincaré disc of system (VIII).

3.8.1. The finite and infinite equilibria. Note that S+ of system (VIII) is the same that S− of
system (VII) if we regard ˇ̌a as −ˇ̌a. While S− of system (VIII) is also the same that S+ of
system (VII). So from the results of system (VII) for the finite and infinite equilibria of system
(VIII) we get the Table 6. Note that the equilibria P+ =

(
−1, ˇ̌a/b̌

)
and P− =

(
1, ˇ̌a/b̌

)
are

virtual.

3.8.2. The global phase portraits in the Poincaré disc. According to Table 6, we below discuss
the global phase portraits in the following several cases.

In the case (VIII-1) a separatrix comes from the saddle p, then goes to the stable node q.
The remaining orbits of the phase portrait are determined where they start and they end by
the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the global
phase portrait is shown in Figure 36.

In the case (VIII-2) a separatrix comes from the unstable node O in the negative y-direction,
then goes to the stable node q. The remaining orbits of the phase portrait are determined by
the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the global
phase portrait is shown in Figure 37.

In the case (VIII-3) all orbits start from the infinity in the half plane x ≥ 0, then go to the
stable node q. Thus the global phase portrait is shown in Figure 38.

In the case (VIII-4) a separatrix starts from the semi-hyperbolic saddle-node O in the positive
y-direction, then goes to the stable node q. We similarly get the remaining orbits of the phase
portrait by the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus
the global phase portrait is shown in Figure 39.
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In the case (VIII-5) one separatrix starts from the saddle O in the positive y-direction, then
goes to the stable node q. The second separatrix starts from the unstable node O in the
negative y-direction, then goes to q. The remaining orbits in the phase portrait are determined
by the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the
global phase portrait is shown in Figure 40.

In the case (VIII-6) one separatrix starts from the saddle O in the positive y-direction, then
goes to the stable node q. The second separatrix starts from the unstable node O in the
negative y-direction, then goes to q. The remaining orbits in the phase portrait are determined
by the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the
global phase portrait is shown in Figure 41.

In the case (VIII-7) a separatrix comes from the unstable node p, then goes to the stable
node O in the positive y-direction. We get the remaining orbits by the type of stability of the
equilibria and by the Poincáre-Bendixson theorem. Thus the global phase portrait is shown in
Figure 42.

In the case (VIII-8) all orbits come from the unstable node p, then go to the infinity of the
half plane x ≤ 0. Thus the global phase portrait is shown in Figure 43.

In the case (VIII-9) a separatrix comes from the unstable node p, then goes to the semi-
hyperbolic saddle node O in the negative y-direction. We obtain the remaining orbits by the
type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the global
phase portrait is shown in Figure 44.

In the case (VIII-10) a separatrix comes from the unstable node p, then goes to the saddle
q. We similarly get the remaining orbits by the type of stability of the equilibria and by the
Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 45.

3.9. Phase portraits in the Poincaré disc of system (IX).

3.9.1. The finite equilibria. Note that the differential system S+ (respectively S−) has the
equilibrium P+ = (0, 0) (respectively P− = (0, 0)). Namely P− = P+ =: P . Then the
equilibrium P is real for both systems S+ and S−.

The eigenvalues of the equilibrium P+ are 1 and b̌. So if b̌ > 0 (respectively b̌ < 0) then P+

is an unstable node (respectively a saddle). The eigenvalues of the equilibrium P− are −1 and
b̌. Then P− is a saddle if b̌ > 0 and a stable node if b̌ < 0.

3.9.2. The infinite equilibria. We write the differential system S+ in the local charts U1 and
becomes

u̇ = ǎ+ (b̌− 1)u, v̇ = −v;
and in the local chart U2 becomes

u̇ = (1− b̌)u− ǎu2, v̇ = −b̌v − ǎuv.

We separate the study of the infinite equilibria of system S+ in two cases.

Case (IX1+): b̌ ̸= 1. Then there is only one infinite equilibrium of system S+ in the local chart
U1, namely p =

(
−ǎ/(b̌− 1), 0

)
and the origin O of the local chart U2 is an infinite equilibrium.

The eigenvalues of the equilibrium p are −1 and b̌− 1. Thus p is a stable node if b̌ < 1 and a
saddle if b̌ > 1. The eigenvalues of the equilibrium O are 1− b̌ and −b. Then O is an unstable
node if b̌ < 0, a semi-hyperbolic saddle-node if b̌ = 0, a saddle if 0 < b̌ < 1 and a stable node
b̌ > 1.

Case (IX2+): b̌ = 1. We consider two subcases: ǎ ̸= 0 and ǎ = 0. In the first subcase there is
no infinite equilibrium in the local chart U1 but the origin O of the local chart U2 is an infinite
equilibrium. Moreover the eigenvalues of O are 0 and −1, implying that it is a semi-hyperbolic
saddle-node. In the second subcase all points on the u-axis are infinite equilibria in the local
chart V1 for system S+. Since the eigenvalues at each one of these equilibria are 0 and −1 ̸= 0,
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System Conditions Finite Equilibria Infinite Equilibria

(VIII)

(VIII-1): b̌ < −1

P+(stable node) p(saddle)
O(unstable node)

P−(saddle) q(stable node)
O(unstable node)

(VIII-2): b̌ = −1, ˇ̌a < 0

P+(stable node)
O(semi-hyperbolic saddle-node)

P−(saddle) q(stable node)
O(unstable node)

(VIII-3): b̌ = −1, ˇ̌a = 0

P+(stable node) u-axis(starts an orbit)
O(starts an orbit)

P−(saddle) q(stable node)
O(unstable node)

(VIII-4):b̌ = −1, ˇ̌a > 0

P+(stable node)
O(semi-hyperbolic saddle-node)

P−(saddle) q(stable node)
O(unstable node)

(VIII-5): −1 < b̌ < 0

P+(stable node) p(unstable node)
O(saddle)

P−(saddle) q(stable node)
O(unstable node)

(VIII-6): 0 < b̌ < 1

P+(saddle) p(unstable node)
O(stable node)

P−(unstable node) q(stable node)
O(saddle)

(VIII-7): b̌ = 1, ˇ̌a < 0

P+(saddle) p(unstable node)
O(stable node)

P−(unstable node)
O(semi-hyperbolic saddle-node)

(VIII-8): b̌ = 1, ˇ̌a = 0

P+(saddle) p(unstable node)
O(stable node)

P−(unstable node) u-axis(ends an orbit)
O(ends an orbit)

(VIII-9): b̌ = 1, ˇ̌a > 0

P+(saddle) p(unstable node)
O(stable node)

P−(unstable node)
O(semi-hyperbolic saddle-node)

(VIII-10): b̌ > 1

P−(saddle) p(unstable node)
O(stable node)

P+(unstable node) q(saddle)
O(stable node)

Table 6. The local phase portraits at the finite and infinite equilibria of the
piecewise differential system (VIII).

it follows that at each one of these equilibria ends an orbit. The origin of the local chart U2 is
also an equilibrium inside the continuum of equilibria at infinity with eigenvalues 0 and −1, so
the same conclusion for it.

Again we write the differential system S− in the local charts V1 and U2. Then in the local
chart V1 system S− writes

u̇ = −ǎ+ (b̌+ 1)u, v̇ = v;

and in the local chart U2 becomes

u̇ = −(1 + b̌)u+ ǎu2, v̇ = −b̌v + ǎuv.
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As we did for the system S+, We separate the study of the infinite equilibria of system S−
in two cases.

Case (IX1−): b̌ ̸= −1. Then there is only one infinite equilibrium of system S− in the local chart
V1, namely q =

(
ǎ/(b̌+ 1), 0

)
and the origin O of the local chart U2 is an infinite equilibrium.

The eigenvalues of the equilibrium q are 1 and b̌ + 1. Then q is a saddle if b̌ < −1 and an
unstable node if b̌ > −1. The eigenvalues of the equilibrium O are −1− b̌ and −b. Then O is
an unstable node if b̌ < −1, a saddle if −1 < b̌ < 0, a semi-hyperbolic saddle-node if b̌ = 0 and
a stable node b̌ > 0.

Case (IX2−): b̌ = −1. Again we consider two subcases: ǎ ̸= 0 and ǎ = 0. In the first subcase
there is no infinite equilibrium in the local chart U1 but the origin O of the local chart U2 is
an infinite equilibrium. Moreover the eigenvalues of O are 0 and 1, implying that it is a semi-
hyperbolic saddle-node. In the second subcase all points on the u-axis are infinite equilibria
in the local chart V1 for system S−. Since the eigenvalues at each one of these equilibria are 0
and 1 ̸= 0, each one of these equilibria starts an orbit. At the origin of the local chart U2 we
also have a semi-hyperbolic saddle-node.

In summary from the above discussion, we obtain the results of Table 7.

3.9.3. The global phase portraits in the Poincaré disc. Note that ẋ = 0 and ẏ = b̌y when x = 0.
This implies that the y-axis is invariant, i.e., the y-axis is formed by orbits. According to Table
7, we divide the study of the global phase portraits in the following cases.

In the case (IX-1) one stable separatrix of P comes from the unstable node O in the positive
y-direction, the second stable separatrix of P comes from the unstable node O in the negative y-
direction, and the third stable separatrix of P comes from the saddle q. An unstable separatrix
of P goes to the stable node p. The remaining orbits of the phase portrait are determined where
they start and they end by the type of stability of the equilibria and by the Poincáre-Bendixson
theorem. Thus the global phase portrait is shown in Figure 46.

In the case (IX-2) one stable separatrix of P comes from the unstable node O in the positive
y-direction and the second stable separatrix of P comes from the semi-hyperbolic saddle-node
O in the negative y-direction. An unstable separatrix of P goes to the stable node p. The
remaining orbits of the phase portrait are determined by the type of stability of the equilibria
and by the Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 47.

In the case (IX-3) one stable separatrix of P comes from the unstable node O in the positive
y-direction and the second stable separatrix of P comes from the degenerate equilibrium O
in the negative y-direction. An unstable separatrix of P goes to the stable node p. On the
other hand initiating at infinity in the half plane x < 0 all orbits go to P . The remaining
orbits of the phase portrait are determined by the type of stability of the equilibria and by the
Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 48.

In the case (IX-4) one stable separatrix of P comes from the unstable node O in the positive
y-direction and the second stable separatrix of P comes from the semi-hyperbolic saddle-node
O in the negative y-direction. An unstable separatrix of P goes to the stable node p. The
remaining orbits of the phase portrait are determined by the type of stability of the equilibria
and by the Poincáre-Bendixson theorem. Thus the global phase portrait is shown in Figure 49.

In the case (IX-5) one stable separatrix of P comes from the unstable node O in the positive
y-direction and the second stable separatrix of P comes from the saddle O in the negative
y-direction. An unstable separatrix of P goes to the stable node p. The remaining orbits of the
phase portrait are determined by the type of stability of the equilibria and by the Poincáre-
Bendixson theorem. Thus the global phase portrait is shown in Figure 50.

In the case (IX-6) one unstable separatrix of P goes to the saddle O in the positive y-direction
and the second unstable separatrix of P goes to the stable node O in the negative y-direction.
A stable separatrix of P comes from the unstable node q. The remaining orbits of the phase
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System Conditions Finite Equilibria Infinite Equilibria

(IX)

(IX-1): b̌ < −1

P (saddle) p(stable node),
O(unstable node)

P (stable node) q(saddle)
O(unstable node)

(IX-2): b̌ = −1, ˇ̌a < 0

P (saddle) p(stable node)
O(unstable node)

P (stable node)
O(semi-hyperbolic saddle-node)

(IX-3): b̌ = −1, ˇ̌a = 0

P (saddle) p(stable node)
O(unstable node)

P (stable node) u-axis(starts an orbit)
O(starts an orbit)

(IX-4): b̌ = −1, ˇ̌a > 0

P (saddle) p(stable node)
O(unstable node)

P (stable node)
O(semi-hyperbolic saddle-node)

(IX-5): −1 < b̌ < 0

P (saddle) p(stable node)
O(unstable node)

P (stable node) q(unstable node)
O(saddle)

(IX-6): 0 < b̌ < 1

P (unstable node) p(stable node)
O(saddle)

P (saddle) q(unstable node)
O(stable node)

(IX-7): b̌ = 1, ˇ̌a < 0

P (unstable node)
O(semi-hyperbolic saddle-node)

P (saddle) q(unstable node)
O(stable node)

(IX-8): b̌ = 1, ˇ̌a = 0

P (unstable node) u-axis(ends an orbit)
O(ends an orbit)

P (saddle) q(unstable node)
O(stable node)

(IX-9): b̌ = 1, ˇ̌a > 0

P (unstable node)
O(semi-hyperbolic saddle-node)

P (saddle) q(unstable node)
O(stable node)

(IX-10): b̌ > 1

P (unstable node) p(saddle)
O(stable node)

P (saddle) q(unstable node)
O(stable node)

Table 7. The local phase portraits at the finite and infinite equilibria of the
piecewise differential system (IX).

portrait are determined by the type of stability of the equilibria and by the Poincáre-Bendixson
theorem. Thus the global phase portrait is shown in Figure 51.

In the case (IX-7) one unstable separatrix of P goes to the semi-hyperbolic saddle-node O
in the positive y-direction and the second unstable separatrix of P goes to the stable node O
in the negative y-direction. A stable separatrix of P comes from the unstable node q. On the
other hand by the type of stability of the equilibria and by the Poincáre-Bendixson theorem
we get the remaining orbits of the phase portrait. Thus the global phase portrait is shown in
Figure 52.
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In the case (IX-8) one unstable separatrix of P goes to the degenerate equilibrium O in the
positive y-direction and the second unstable separatrix of P goes to the stable node O in the
negative y-direction. A stable separatrix of P comes from the unstable node q. On the other
hand all orbits start from P going to the infinity in the half plane x > 0. By the type of
stability of the equilibria and by the Poincáre-Bendixson theorem we get the remaining orbits
of the phase portrait. Thus the global phase portrait is shown in Figure 53.

In the case (IX-9) a stable separatrix of P comes from the unstable node q. One unstable
separatrix of P goes to the semi-hyperbolic saddle-node O in the positive y-direction. The
second unstable separatrix of P goes to the stable node O in the negative y-direction. By the
type of stability of the equilibria and by the Poincáre-Bendixson theorem we get the remaining
orbits of the phase portrait. Thus the global phase portrait is shown in Figure 54.

In the case (IX-910) a stable separatrix of P comes from the unstable node q. One unstable
separatrix of P goes to the stable node O in the positive y-direction, the second unstable
separatrix of P goes to the stable node O in the negative y-direction, and the third unstable
separatrix of P goes to the saddle p. We obtain the remaining orbits of the phase portraits by
the type of stability of the equilibria and by the Poincáre-Bendixson theorem. Thus the global
phase portrait is shown in Figure 55.

3.10. Phase portraits in the Poincaré disc of system (X). Note that S+ of system (X) is
the same that S− of system (IX) if we regard ǎ as −ǎ. While S− of system (X) is also the same
that S+ of system (IX). Thus we obtain the result of Table 7 for finite and infinite equilibria.
So we obtain the phase portraits in the Poincaré disc for system (X) by exchanging the half
planes x ≥ 0 and x ≤ 0 of system (IX).

3.11. Phase portraits in the Poincaré disc of system (XI). By (x, y, ˇ̌a, b̌, t) → (x, y,−ˇ̌a,
−b̌,−t), system (XI) is changed to system (VIII). Then we obtain the global phase portraits of
system (XI) with parameters (ˇ̌a, b̌) by changing the direction of orbits for system (VIII) with
parameters (−ˇ̌a,−b̌).

3.12. Phase portraits in the Poincaré disc of system (XII). By (x, y, ˇ̌a, b̌, t) → (x, y,−ˇ̌a,
−b̌,−t), system (XII) is changed to system (VII). Then we obtain the global phase portraits of
system (XII) with parameters (ˇ̌a, b̌) by changing the direction of orbits for system (VII) with
parameters (−ˇ̌a,−b̌).

4. The distinct topologically equivalent phase portraits

In this section we summarize results on distinct topological equivalent phase portraits in
Figures 7 and 55. By the separatrix configuration of the phase portrait in Theorem 2 we have
the following 18 categories

1: Figures 7, 15, 26 and 35 are topologically equivalent;
2: Figures 8 and 27 are topologically equivalent;
3: Figures 9 and 13 are topologically equivalent;
4: Figures 10 and 11 are topologically equivalent;
5: Figure 12;
6: Figures 14, 29, 32 and 34 are topologically equivalent;
7: Figures 16, 20, 46 and 55 are topologically equivalent;
8: Figures 17, 19, 47, 49, 52 and 54 are topologically equivalent;
9: Figure 18;
10: Figures 21, 25, 36 and 45 are topologically equivalent;
11: Figures 22, 24, 37, 39, 42 and 44 are topologically equivalent;
12: Figure 23;
13: Figures 28 and 33 are topologically equivalent;
14: Figures 30 and 31 are topologically equivalent;
15: Figures 38 and 43 are topologically equivalent;
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16: Figures 40 and 41 are topologically equivalent;
17: Figures 48 and 53 are topologically equivalent;
18: Figures 50 and 51 are topologically equivalent.

This completes the proof of Theorem 1.
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Figure 7. S = 15, R = 4. Figure 8. S = 13, R = 4.

Figure 9. S = 10, R = 3. Figure 10. S = 11, R = 4.

Figure 11. S = 11, R = 4. Figure 12. S = 10, R = 3.
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Figure 13. S = 10, R = 3. Figure 14. S = 13, R = 4.

Figure 15. S = 15, R = 4. Figure 16. S = 13, R = 4.

Figure 17. S = 10, R = 3. Figure 18. S = 7, R = 2.
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Figure 19. S = 10, R = 3. Figure 20. S = 13, R = 4.
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Figure 21. S = 9, R = 2. Figure 22. S = 7, R = 2.

Figure 23. S = 9, R = 1. Figure 24. S = 7, R = 2.

Figure 25. S = 9, R = 2. Figure 26. S = 15, R = 4.
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Figure 27. S = 13, R = 4 Figure 28. S = ∞.

Figure 29. S = 13, R = 4. Figure 30. S = 16, R = 5.

Figure 31. S = 16, R = 5. Figure 32. S = 13, R = 4.
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Figure 33. S = ∞. Figure 34. S = 13, R = 4.

Figure 35. S = 15, R = 4. Figure 36. S = 9, R = 2.

Figure 37. S = 7, R = 2. Figure 38. S = ∞.
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Figure 39. S = 7, R = 2. Figure 40. S = 10, R = 3.

Figure 41. S = 10, R = 3. Figure 42. S = 7, R = 2.

Figure 43. S = ∞. Figure 44. S = 7, R = 2.
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Figure 45. S = 9, R = 2. Figure 46. S = 13, R = 4.

Figure 47. S = 10, R = 3. Figure 48. S = ∞.

Figure 49. S = 10, R = 3. Figure 50. S = 12, R = 3.
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Figure 51. S = 12, R = 3. Figure 52. S = 10, R = 3.

Figure 53. S = ∞. Figure 54. S = 10, R = 3.

Figure 55. S = 13, R = 4.


