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Abstract: In this article, we study the maximum number of limit cycles of discontinuous piecewise
differential systems, formed by two Hamiltonians systems separated by a straight line. We consider
three cases, when both Hamiltonians systems in each side of the discontinuity line have simultane-
ously degree one, two or three. We obtain that in these three cases, this maximum number is zero,
one and three, respectively. Moreover, we prove that there are discontinuous piecewise differential
systems realizing these maximum number of limit cycles. Note that we have solved the extension
of the 16th Hilbert problem about the maximum number of limit cycles that these three classes
of discontinuous piecewise differential systems separated by one straight line and formed by two
Hamiltonian systems with a degree either one, two, or three, which such systems can exhibit.
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1. Introduction and Statement of the Main Results

Discontinuous dynamical systems find pervasive applications across various domains,
from electrical circuits and mechanical systems to biological processes, see [1–3]. These sys-
tems frequently exhibit abrupt changes, discontinuities, or switching phenomena, leading
to sudden state transitions or impacts. For further insights, one may refer to the compre-
hensive works of Simpson [4], di Bernardo et al. [5], and the survey by Makarenkov and
Lamb [6]. The Filippov convention stands out as a robust framework for modeling and
analyzing such systems, providing a nuanced understanding of their dynamics.

The identification of a periodic orbit isolated within the set of all periodic orbits of
a system is termed a “limit cycle”. Understanding the existence or absence of these limit
cycles is pivotal in studying the dynamics of differential systems. Consequently, numerous
authors have delved into the examination of limit cycles in discontinuous piecewise linear
differential systems separated by a straight line, as evidenced by the literature in this field,
see ref. [7] for more details without being exhaustive for a piecewise model on the Savanna
ecosystem, ref. [8] for a piecewise model on canard limit cycles, ref. [9] for the index theory
of the piecewise models, ref. [10] for the global dynamics of some piecewise models, ref. [11]
for a center problem in piecewise models, ref. [12] for showing a switching phenomenon of
a limit cycle under Filippov construction of the Hamiltonian system, refs. [13,14] for some
properties of the piecewise linear models, and refs. [15–21] for the study of the limit cycles
of different piecewise models.

In this paper, we study the limit cycles for the class of discontinuous piecewise
differential systems separated by a straight line and formed by two Hamiltonian systems of
degree either one, two, or three. Without loss of generality, we can consider that the straight
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line of discontinuity is x = 0 and that the vector field associated with these discontinuous
piecewise differential systems is

Z(x, y) =
{

Z1(x, y), if x ≤ 0,
Z2(x, y), if x ≥ 0,

(1)

where Zi is the vector field of the Hamiltonian system

ẋ =
∂

∂y
Hi(x, y), ẏ = − ∂

∂x
Hi(x, y),

with Hamiltonian Hi(x, y) for i ∈ {1, 2}. The behavior of the piecewise differential system
on the line of discontinuity x = 0 is defined following Filippov’s rules, see [22]. Usually
such discontinuous piecewise differential systems are called Filippov’s systems.

Our main result is the following one.

Theorem 1. Consider the discontinuous piecewise differential system (1) formed by two arbitrary
Hamiltonians H1(x, y) and H2(x, y) of degree

(a) 2, then system (1) has no limit cycles.
(b) 3, then system (1) has at most one limit cycle.
(c) 4, then system (1) has at most three limit cycles.

Moreover, there are differential systems (1) formed by two convenient Hamiltonians H1(x, y) and
H2(x, y) of the corresponding degree realizing the upper bounds on the number of limit cycles of
statements (a) and (b).

Theorem 1 is proved in Section 2.

2. Proof of Theorem 1

Proof of statement (a) of Theorem 1. Consider two arbitrary Hamiltonians of degree two
as follows

H1(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2,
H2(x, y) = b0 + b1x + b2y + b3x2 + b4xy + b5y2.

These Hamiltonians generate the next Hamiltonian systems of degree one

ẋ = a2 + a4x + 2a5y, ẏ = −a1 − 2a3x − a4y, (2)

ẋ = b2 + b4x + 2b5y, ẏ = −b1 − 2b3x − b4y. (3)

Of course, H1(x, y) and H2(x, y) are first integrals of systems (2) and (3), respectively. Now,
we look for the limit cycles that intersect the straight line x = 0 at the points (0, y1) and
(0, y2) with y1 ̸= y2. To complete this, we analyze how many solutions have the following
polynomial system.

e1(y1, y2) := H1(0, y1)− H1(0, y2) = 0,
e2(y1, y2) := H2(0, y1)− H2(0, y2) = 0.

(4)

Solving system (4) is equivalent to finding the solutions of the system

E1(y1, y2) :=
e1(y1, y2)

(y1 − y2)
= 0 ⇒ a2 + a5y1 + a5y2 = 0,

E2(y1, y2) :=
e2(y1, y2)

(y1 − y2)
= 0 ⇒ b2 + b5y1 + b5y2 = 0.

(5)

Since the straight lines E1(y1, y2) = 0 and E2(y1, y2) = 0 are parallel, it follows that
system (5) has either no solutions with respect to the variables y1 and y2, or infinitely many
solutions. In both cases, the discontinuous piecewise differential system can not have
limit cycles.
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For the proof of statement (b) of Theorem 1, we shall use the next well-known result;
for the proof, see, for instance, [23].

Theorem 2 (Bézout Theorem). Let f and g be two polynomials in R[x, y] of degrees n and m,
respectively. Then, if the set V( f , g) := {(x, y) ∈ R2 : f (x, y) = g(x, y) = 0} has finitely many
solutions, then it has at most nm points.

Proof of statement (b) of Theorem 1. Consider the following two arbitrary Hamiltonians
of degree three:

H1(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2 + a6x3 + a7x2y + a8xy2 + a9y3,
H2(x, y) = b0 + b1x + b2y + b3x2 + b4xy + b5y2 + b6x3 + b7x2y + b8xy2 + b9y3.

These Hamiltonians generate the Hamiltonian systems

ẋ = a2 + a4x + 2a5y + a7x2 + 2a8xy + 3a9y2,
ẏ = −a1 − 2a3x − a4y − 3a6x2 − 2a7xy − a8y2,

(6)

ẋ = b2 + b4x + 2b5y + b7x2 + 2b8xy + 3b9y2,
ẏ = −b1 − 2b3x − b4y − 3b6x2 − 2b7xy − b8y2,

(7)

Again H1(x, y) and H2(x, y) are first integrals of systems (6) and (7), respectively. Now,
we look for the limit cycles that intersect the straight line x = 0 at the points (0, y1) and
(0, y2), with y1 ̸= y2. So we must analyze how many solutions the system has.

e1(y1, y2) := H1(0, y1)− H1(0, y2) = 0,
e2(y1, y2) := H2(0, y1)− H2(0, y2) = 0.

(8)

Solving system (8) is equivalent to finding the solutions of the system

E1(y1, y2) := a2 + a5(y1 + y2) + a9(y2
1 + y1y2 + y2

2) = 0,
E2(y1, y2) := b2 + b5(y1 + y2) + b9(y2

1 + y1y2 + y2
2) = 0,

where Ei(y1, y2) = ei(y1, y2)/(y1 − y2). Notice that

E12(y1, y2) = b9E1(y1, y2)− a9E2(y1, y2)
= b9a2 − a9b2 + (b9a5 − a9b5)(y1 + y2).

Using the Bézout Theorem, the upper bound for the maximum number of solutions of
system E1(y1, y2) = 0 and E12(y1, y2) = 0 is 2, when this system has finitely many solutions.
Note that by the symmetry of these polynomial equations, if (y1, y2) is a solution, then
(y2, y1) is also a solution, but these two solutions provide the same periodic orbit. Then,
this family of discontinuous piecewise differential systems has at most one limit cycle. This
upper bound is reached as can be seen in Example 1 of Section 3.

Proof of statement (c) of Theorem 1. Consider two arbitrary Hamiltonians of degree four,

H1(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2 + a6x3 + a7x2y + a8xy2

+a9y3 + a10x4 + a11x3y + a12x2y2 + a13xy3 + a14y4,
H2(x, y) = b0 + b1x + b2y + b3x2 + b4xy + b5y2 + b6x3 + b7x2y + b8xy2

+b9y3a10x4 + b11x3y + b12x2y2 + b13xy3 + b14y4.

These Hamiltonians generate the following two Hamiltonian systems

ẋ = a2 + a4x + 2a5y + a7x2 + 2a8xy + 3a9y2 + a11x3 + 2a12x2y
+3a13xy2 + 4a14y3,

ẏ = 4a10x3 − a1 − 2a3x − a4y − 3a6x2 − 2a7xy − a8y2 + 3a11x2y
+2a12xy2 + a13y3,

(9)
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and
ẋ = b2 + b4x + 2b5y + b7x2 + 2b8xy + 3b9y2 + b11x3 + 2b12x2y

+3b13xy2 + 4b14y3,
ẏ = 4b10x3 − b1 − 2b3x − b4y − 3b6x2 − 2b7xy − b8y2 + 3b11x2y

+2b12xy2 + b13y3,

(10)

respectively. The Hamiltonians H1(x, y) and H2(x, y) are first integrals of systems (9)
and (10), respectively. Now, we look for the limit cycles that intersect the straight line x = 0
at the points (0, y1) and (0, y2), with y1 ̸= y2. To complete that, we analyze how many
solutions the system

e1(y1, y2) := H1(0, y1)− H1(0, y2) = 0,
e2(y1, y2) := H2(0, y1)− H2(0, y2) = 0,

(11)

can have. Defining

E1(y1, y2) := e1(y1, y2)/(y1 − y2) and E2(y1, y2) := e2(y1, y2)/(y1 − y2).

Since we are interested in the solutions with y1 ̸= y2, system (11) is equivalent to system
E1(y1, y2) = E2(y1, y2) = 0, i.e.,

a2 + a5(y1 + y2) + a9(y2
1 + y1y2 + y2

2) + a14(y3
1 + y2

1y2 + y1y2
2 + y3

2) = 0,
b2 + b5(y1 + y2) + b9(y2

1 + y1y2 + y2
2) + b14(y3

1 + y2
1y2 + y1y2

2 + y3
2) = 0.

Notice that

E12(y1, y2) = b14E1(y1, y2)− a14E2(y1, y2)
= (b14a5 − a14b5)(y1 + y2) + (b14a9 − a14b9)(y2

1 + y1y2 + y2
2)

+b14a2 − a14b2

is a polynomial of degree two. Using the Bézout Theorem, the upper bound for the
maximum number of solutions of system E1(y1, y2) = 0 and E12(y1, y2) = 0 is 6, when this
system has finitely many solutions. Again, note that by the symmetry of these polynomial
equations, if (y1, y2) is a solution, then (y2, y1) is also a solution, but these two solutions
provide the same periodic orbit. This implies that the discontinuous piecewise differential
systems has at most three limit cycles. This upper bound is reached, see Example 2 of
Section 3.

3. Examples

In this section, we provide in example 1 a discontinuous piecewise differential system
separated by the straight line x = 0 is formed by two Hamiltonians systems of degree 2 with
one limit cycle. Furthermore, in example 2, a discontinuous piecewise differential system
separated by the straight line x = 0 is formed by two Hamiltonians systems of degree 3
with three limit cycles. Hence, these two examples complete the proof of Theorem 1.

Example 1. Consider the following two Hamiltonians of degree three,

H1(x, y) = x3 − y3 − y2 + y,

H2(x, y) = −x3 − xy − 8y3 − y2 +
7y
2

.
(12)

These Hamiltonians generate the Hamiltonian systems

ẋ = 1 − 2y − 3y2, ẏ = −3x2, (13)

ẋ = −x − 24y2 − 2y +
7
2

, ẏ = 3x2 + y, (14)
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respectively. Of course H1(x, y) and H2(x, y) are first integrals of systems (13) and (14), respec-
tively. For this discontinuous piecewise differential system, system (11) provides the system

E1(y1, y2) = 1 − y1 − y2
1 − y2 − y1y2 − y2

2 = 0,

E2(y1, y2) =
1
2
(
7 − 2y1 − 16y2

1 − 2y2 − 16y1y2 − 16y2
2
)
= 0.

(15)

System (15) has the unique real solution

(ȳ1, ȳ2) =

(
1

28

(
9 −

√
37

)
,

1
28

(√
37 + 9

))
. (16)

Then, the two points of intersection with x = 0 of the limit cycle are (0, ȳ1) and (0, ȳ2),
see this limit cycle in Figure 1.

Z1(x, y) Z2(x, y)

0 x

y

Figure 1. The limit cycle of the discontinuous piecewise differential system generated by Hamil-
tonian (12) passing through the points (0, ȳ1) and (0, ȳ2), where ȳ1, ȳ2 are given in (16). H1(x, y)
define system in x ≤ 0, and H2(x, y) define the system in x ≥ 0.

Example 2. Consider the following two Hamiltonians of degree four

H1(x, y) = 2x3y + 2x2 − 4xy
3

+ y4 − 4y3 +
51y2

10
− 19y

10
,

H2(x, y) = 3x4 + 2x3 + xy2 − 2xy + y4 − 31y3

12
+

5y2

4
− y

6
.

(17)

These Hamiltonians generate the Hamiltonian systems

ẋ = 2x3 − 4x
3

+ 4y3 − 12y2 +
51y

5
− 19

10
, ẏ = −6x2y + 4x +

4y
3

, (18)

ẋ = 2xy − 2x + 4y3 − 31y2

4
+

5y
2

− 1
6

, ẏ = −12x3 − 6x2 − y2 + 2y, (19)

and H1(x, y) and H2(x, y) are first integrals of systems (18) and (19), respectively. For this
discontinuous piecewise differential system, system (11) has only the following three real solutions

(ȳ1
1, ȳ1

2) = (−0.206887, 2.01873),
(ȳ2

1, ȳ2
2) = (0.141455, 0.393626),

(ȳ3
1, ȳ3

2) = (1.41754, 1.67084).
(20)

Then, the two points of intersection with x = 0 of each limit cycle are (0, ȳi
1) and (0, ȳi

2)
for i ∈ {1, 2, 3}; see these three limit cycles in Figure 2.
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Z1(x, y) Z2(x, y)

0 x

y

Figure 2. The three limit cycles of the discontinuous piecewise differential system generated by
Hamiltonian (17) passing through the points (0, ȳi

i), i ∈ {1, 2, 3}, where ȳi
i are given in (20).
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