Interval Translation Maps

Denis Volk New Trends in Dynamical Systems Salou 2012

Interval Translation Maps

FIGURE: An Interval Translation Map of d = 3 intervals.

$$0 = \beta_0 < \beta_1 < \dots < \beta_d = 1, \quad \Delta_j := [\beta_{j-1}, \beta_j),$$
$$\Omega := [0, 1), \quad \Omega = \sqcup_{j=1}^d \Delta_j.$$

An *interval translation* $T: \Omega \to \Omega$ is a map given by a translation on each of Δ_j :

$$T|_{\Delta_j} \colon x \mapsto x + \gamma_j,$$

for some $(\gamma_1, \ldots, \gamma_d) \in \mathbb{R}^d$.

Denis Volk (KTH & IITP RAS)

Motivation

Introduced in 1995 by Boshernitzan, Kornfeld.

- Non-invertible generalizations of Interval Exchange Transformations
- Polygonal billiards with semi-permeable walls
- Applications: digital filters, conductivity of crystals in a magnetic field

Lebesgue measure is no longer invariant. New effects due to this.

DenisVolk (KTH & IITP RAS)

Limit set

Let $\Omega_0 = \Omega$, $\Omega_n = T\Omega_{n-1}$ for $n \ge 1$. The *limit set X* is the closure of $\bigcap_{n=1}^{\infty} \Omega_n$.

An interval translation map is called of *finite type* if $\Omega_{n+1} = \Omega_n$ for some *n*, otherwise it is called of *infinite type*.

Denote the set of infinite type ITMs by S.

Denis Volk (KTH & IITP RAS)

Iterations: example 1 X is 3 intervals. 400,000 --145,922 440,774 724,292

DenisVolk (KTH & IITP RAS)

Iterations: example 2

X is 28 intervals.

DenisVolk (KTH & IITP RAS)

Finiteness dichotomy

THEOREM (BOSHERNITZAN, KORNFELD, 1995)

- $\operatorname{rk}(\beta_i, \gamma_i)_{\mathbb{Q}} \leq 2 \Rightarrow T$ is of finite type.
- There exists a translation map of three intervals of infinite type.

THEOREM (SCHMELING, TROUBETZKOY, 1998)

- Finite type $\Leftrightarrow X$ is a finite union of intervals, $T|_X$ is IET.
- Infinite type, $T|_X$ is transitive $\Rightarrow X$ is a Cantor set.

Denis Volk (KTH & IITP RAS)

Parameter space

The space ITM(*d*) of *d* intervals' translations is a convex polytope in \mathbb{R}^{2d-1} with the Euclidean metric and the Lebesgue measure.

For every $n \ge 0$, $\Omega_{n+1} = \Omega_n$ is finitely many linear inequalities. Thus the set of finite type ITMs is at least a union of countably many open cells.

FINITENESS PROBLEM

How big is the set S of ITMs of infinite type?

THEOREM (2012)

arXiv:1203.3405

In the 5-dim space ITM(3), the set S has zero Lebesgue measure. Moreover, from numerics (Bruin, Clack, 2011) follows

 $4 \leq \dim_H(\mathcal{S} \cap \mathrm{ITM}(3)) \leq 4.88.$

Denis Volk (KTH & IITP RAS)

Main tool: induction (renormalization)

Global idea of renormalization

- •We investigate some class of maps
- Renormalizable maps: there exists a proper region s.t. the rescaled first-return map is of the same class
- Study the dynamics of some renormalization operator in the parameter space:
 - Fixed points ~ self-similar maps (like BK example)
 - Invariant sets
- Learn about the structure of the parameter space

Why the induction is useful here

 $\Delta \subset \Omega$ is *regular* if $\forall x \in \Omega$ some $T^n x \in \Delta$, *n* uniformly bounded. T_{Δ} is the induced map.

 $\Delta \subset \Omega$ is a *trap* if it is regular and $T\Delta \subset \Delta$. Then $T_{\Delta} = T|_{\Delta}$.

LEMMA

Assume X is transitive.

- Let T have finite type. Then for any regular Δ the map T_{Δ} has finite type.
- Let T_{Δ} have finite type for some regular Δ . Then T has finite type.

So, we renormalize until we see it's already finite type. Otherwise it's infinite type.

DenisVolk (KTH & IITP RAS)

First step: dimension reduction

 $T: \Omega \to \Omega$ is *tight* if $[\inf T\Omega, \sup T\Omega) = \Omega$. TITM(d) is the space of tight ITMs of d intervals. dim TITM(d) = dim ITM(d) - 2 = 2d - 3.

DenisVolk (KTH & IITP RAS)

First step: dimension reduction

 $T: \Omega \to \Omega$ is *tight* if $[\inf T\Omega, \sup T\Omega) = \Omega$. TITM(d) is the space of tight ITMs of d intervals. dim TITM(d) = dim ITM(d) - 2 = 2d - 3.

LEMMA

For any $T \in \text{ITM}(d)$ there exists a trap Δ such that the map T_{Δ} is a tight interval translation map of r intervals, $r \leq d$.

Denis Volk (KTH & IITP RAS)

Special class: double rotations

SUZUKI, ITO, AIHARA, 2005 A *double rotation* is

$$f_{(a,b,c)}(x) = \begin{cases} \{x+a\}, & \text{if } x \in [0,c), \\ \{x+b\}, & \text{if } x \in [c,1). \end{cases}$$

Independent rotations of two complementary arcs of S^1 .

 $\dim \operatorname{Rot}(2) = 3.$

Any double rotation is an ITM of 2–4 intervals.

Denis Volk (KTH & IITP RAS)

Tight ITMs reduce to double rotations

Theorem (2012)

- $TITM(3) = A \cup B \cup C \cup K:$
 - $A \cup B \cup C$ is open and dense.
 - *K* is a union of countably many hyperplanes.

Moreover,

- any $T \in A$ is a double rotation,
- any $T \in B$ is reduced to a Rot(2) via Type 1 induction,
- any $T \in C$ is reduced to a Rot(2) via Type 2 induction.

The inductions are piecewise-invertible rational maps.

Why double rotations

THEOREM (BRUIN, CLACK, 2011)

The set $S \cap \operatorname{Rot}(2)$ has zero Lebesgue measure. Moreover, numerically

 $2 \leq \dim_H(\mathcal{S} \cap \operatorname{Rot}(2)) \leq 2.88.$

Proof by Suzuki, Ito, Aihara's renormalization in the parameter space.

Denis Volk (KTH & IITP RAS)

Whole strategy

THEOREM (2012)

In the 5-dim space ITM(3), the set S has zero Lebesgue measure. Moreover, from numerics (Bruin, Clack, 2011) follows

 $4 \leq \dim_H(\mathcal{S} \cap \mathrm{ITM}(3)) \leq 4.88.$

- 1. Reduce to the tight ITMs (dim-2)
- 2. Reduce to the double rotations
- 3. Run the renormalization for the double rotations
- 4. Infinite type maps is an \mathcal{R} -invariant subset
- 5. \mathcal{R} has an ergodic a.c.i.m

DenisVolk (KTH & IITP RAS)

Open problems

- Validate the dim numerics of Bruin, Clack.
- Is it true that for any *d*, infinite types are zero measure?
- •Can X be a Cantor set of positive measure?
- Is X(T) continuous in the Hausdorff topology?
- Is it true that every ITM has an SRB measure constructed as a limit of the renormalized Lebesgue measures? If so, is it continuous in T?

And for piecewise translations in dim > 1, almost nothing is known.

DenisVolk (KTH & IITP RAS)

Renormalization for double rotations

Let $D = [0,1) \times [0,1) \times [0,1]$ be the parameter space of double rotations.

$$\begin{split} D_{0,1} &= \{ (\alpha, \beta, c) \in D_0 \, | \, c \leq 1 - \beta \}, \\ D_{0,2} &= \{ (\alpha, \beta, c) \in D_0 \, | \, 1 - \beta < c < 1 - \alpha \}, \\ D_{0,3} &= \{ (\alpha, \beta, c) \in D_0 \, | \, 1 - \alpha \leq c \}, \end{split} \quad \begin{aligned} D_{1,1} &= \{ (\alpha, \beta, c) \in D_1 \, | \, c \leq \beta \}, \\ D_{1,2} &= \{ (\alpha, \beta, c) \in D_1 \, | \, \beta < c < \alpha \}, \\ D_{1,3} &= \{ (\alpha, \beta, c) \in D_1 \, | \, \alpha \leq c \}. \end{aligned}$$

$$\mathcal{R}(\alpha,\beta,c) = \begin{cases} \left(\left\{\frac{\alpha}{1-\beta}\right\}, \left\{\frac{\beta}{1-\beta}\right\}, \frac{c}{1-\beta}\right) & \text{if } (\alpha,\beta,c) \in D_{0,1}, \\ \left(\left\{\frac{\alpha-1}{\alpha}\right\}, \left\{\frac{\beta-1}{\alpha}\right\}, \frac{c+\alpha-1}{\alpha}\right) & \text{if } (\alpha,\beta,c) \in D_{0,3}, \\ \left(\left\{\frac{\alpha-1}{\beta}\right\}, \left\{\frac{\beta-1}{\beta}\right\}, \frac{c}{\beta}\right) & \text{if } (\alpha,\beta,c) \in D_{1,1}, \\ \left(\left\{\frac{\alpha}{1-\alpha}\right\}, \left\{\frac{\beta}{1-\alpha}\right\}, \frac{c-\alpha}{1-\alpha}\right) & \text{if } (\alpha,\beta,c) \in D_{1,3}. \end{cases}$$

For other pieces, $f_{(\alpha,\beta,c)}$ can already be shown to be finite type.

DenisVolk (KTH & IITP RAS)

Parameter space subpartition (m,n) (1, 3)(2, 3) $\mathbf{3}.$ \mathcal{R} (1, 2)(2, 2)(1, 1)D

Denis Volk (KTH & IITP RAS)

THEOREM (MANE)

Let $\mathcal{R}: D \to D$ be a C^1 piecewise expanding map of a compact manifold D with a bounded distortion. Assume also \mathcal{R} is topologically mixing and preserves a Markov partition with finite image partition. Then \mathcal{R} has an absolutely continuous invariant probability measure μ . Moreover, μ is ergodic, its density is bounded and bounded away from zero.

Thus any invariant set has either full or zero Lebesgue measure.

Main theorem is proven.

DenisVolk (KTH & IITP RAS)

Thank you!

DenisVolk (KTH & IITP RAS)