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Interval Translation Maps
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FIGURE: An Interval Translation Map of d = 3 intervals.

0=F<pr<--<Ba=1, A :=[Bi1,B),
Q:=[0,1), Q=ULA,

An interval translation T : {2 — € is a map given by a translation on
each of A;:

T|A;: x = x+ 7,

for some (71,...,7) € R%.
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Motivation

Introduced in 1995 by Boshernitzan, Kornfeld.

 Non-invertible generalizations of Interval

Exchange Transformations

o Polygonal billiards with semi-permeable

walls

* Applications: digital filters, conductivity of

crystals in a magnetic field

Lebesgue measure is no longer invariant. New effects due to this.
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Limit set

LetQp=%0,Q,=TQ,_; forn > 1.
The limit set X is the closure of N> ,€),,.

An interval translation map is called of finite type if €2, = €2, for

some n, otherwise it is called of infinite type.

Denote the set of infinite type ITMs by S.
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lterations: example 1
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X is 3 intervals.
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lterations: example 2

X is 28 intervals.
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Finiteness dichotomy

THEOREM (BOSHERNITZAN, KORNFELD, 1995)

o 1k(5i,7i)o < 2 =T is of finite type.
o There exists a translation map of three intervals of infinite type.

THEOREM (SCHMELING, TROUBETZKOY, 1998)

e Finite type < X is a finite union of intervals, T|x is IET.

e Infinite type, T|x is transitive = X is a Cantor set.
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Parameter space

The space ITM(d) of d intervals’ translations is a convex polytope
in R?“~! with the Euclidean metric and the Lebesgue measure.

For every n > 0, 2,1 = 2, is finitely many linear inequalities. Thus
the set of finite type I'TMs 1s at least a union of countably many open
cells.

FINITENESS PROBLEM
How big is the set S of ITMs of infinite type?

THEOREM (2012) arXiv:1203.3405

In the 5-dim space ITM(3), the set S has zero Lebesgue measure.
Moreover, from numerics (Bruin, Clack, 2011) follows

4 < dimy (S NITM(3)) < 4.88.
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Main tool: induction (renormalization)

Global idea of renormalization

* We investigate some class of maps
* Renormalizable maps: there exists a proper region s.t.
the rescaled first-return map is of the same class
* Study the dynamics of some renormalization operator in
the parameter space:

* Fixed points ~ selt-similar maps (like BK example)

* [nvariant sets

¢ [ earn about the structure of the parameter space
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Why the induction is useful here

A C Qs regular if Vx € € some T"x € A, n uniformly bounded.
T'A 1s the induced map.

A C Qisatrap if itis regular and TA C A. Then Ta = T|A.

LEMMA
Assume X is transitive.

e Let T have finite type. Then for any regular A the map T has
finite type.

o Let Ta have finite type for some regular A. Then T has finite
type.

So, we renormalize until we see it’s already finite type.

Otherwise it’s infinite type.

Denis Volk (KTH & IITP RAS) 1 October 2012

/




First step: dimension reduction

T~

T: Q — Qis tight if [inf TS, sup TY) = .
TITM(d) is the space of tight ITMs of d intervals.

dim TITM(d) = dimITM(d) — 2 = 2d — 3.
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First step: dimension reduction

T~

T: Q — Qis tight if [inf TS, sup TY) = .
TITM(d) is the space of tight ITMs of d intervals.

dim TITM(d) = dimITM(d) — 2 = 2d — 3.

LEMMA

For any T € ITM(d) there exists a trap A such that the map Tx is a

tight interval translation map of r intervals, r < d.
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Special class: double rotations

SuzUuKlI, ITO, AITHARA, 2005
A double rotation is

{x+a}, ifxe|0,c),

f(ﬂ,b,f)(x) - {{x_|_ b}, if x € [C: 1)'

Independent rotations of two complementary
; arcs of S'.
0 dim Rot(2) = 3.

Any double rotation is an I'TM of 2—4 intervals.
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Tight ITMs reduce to double rotations

THEOREM (2012)
TITM(3) =AUBUC U K:
e AUBU C is open and dense.
e K is a union of countably many hyperplanes.
Moreover,
e any T € A is a double rotation,
e any T € B is reduced to a Rot(2) via Type 1 induction,
e any T € C is reduced to a Rot(2) via Type 2 induction.

The inductions are piecewise-invertible rational maps.
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Why double rotations

THEOREM (BRUIN, CLACK, 2011)

The set S N Rot(2) has zero Lebesgue measure.
Moreover, numerically

2 < dimg(SNRot(2)) < 2.88.

Proof by Suzuki, Ito, Aihara’s renormalization in the parameter space.
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Whole strategy

THEOREM (2012)

In the 5-dim space ITM(3), the set S has zero Lebesgue measure.
Moreover, from numerics (Bruin, Clack, 2011) follows

4 < dimy (S NITM(3)) < 4.88.

Reduce to the tight ITMs (dim-2)
Reduce to the double rotations
Run the renormalization for the double rotations

Infinite type maps is an R -invariant subset

G1 B W N —

R has an ergodic a.c.i.m
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Open problems

* Validate the dim numerics of Bruin, Clack.
* Is it true that for any d, infinite types are zero measure?
*Can X be a Cantor set of positive measure?

* Is X(T) continuous in the Hausdorft topology?

* [s it true that every ITM has an SRB measure constructed

as a limit of the renormalized Lebesgue measures? If so, is

it continuousin 1?

And for piecewise translations in dim > 1, almost nothing is

known.
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Renormalization for double rotations

Let D = [0,1) x [0,1) x [0, 1] be the parameter space of double rotations.
Dy1 ={(a,8,¢) € Dyle <1— 3}, Dyy={(a,8,¢) € Dy|e < 3},
Dng—{l: ED[] 1—,8{8{:1—&}= DLQZ{(&?IS,C)EDlllJB*C:E{EE},
Doz = {(a, 3¢ ]EDD 1 —a <c}, Dy3={(a,3,c) € Dy|a < c}.
(1 « 3 ¢ + |
x{1—5}’{§_q}’1—5) it (a, 6,¢) € Do,
_ {22V {22 SR 20) it (a,.0) € Do,
R( ﬁ )_ N\ ( o v
a, P, c) = r{n:—l} {,3—1} E) f (. f.c) € D
\ l@ ¥ ‘6 ‘.lllll.-f_‘"; 1 a?- ?C‘ 1:.13
[ o 3 C— o _
uk{l—fx}’{l—af}’l—ﬂ:) if (@, 8,¢) € Dy 3.

For other pieces, f(a,5,) can already be shown to be finite type.
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Parameter space partition

Denis Volk (KTH & IITP RAS)

1 October 2012

/




e

-

Parameter space subpartition
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THEOREM (MANE)

Let R: D — D be a C! piecewise expanding map of a compact
manifold D with a bounded distortion. Assume also ‘'R is topologically
mixing and preserves a Markov partition with finite image partition.
Then 'R has an absolutely continuous invariant probability

measure (1. Moreover, | is ergodic, its density is bounded and
bounded away from zero.

Thus any invariant set has either full or zero Lebesgue measure.

Main theorem is proven.
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Denis Volk (KTH & IITP RAS)

Thank you!
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