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Jaume: Moltes feliçitats pels 22 × 3× 5

I no passa res quan hi arribes ...



The problem and the results

ConsiderHill-like equations ẍ+(a+bp(t))x = 0, p being 1-periodic (or 2π-
periodic). A very well-known example is Mathieu equation, where p(t) =
cos(t). These equations show up in multiple applications. In particular, to
study the stability of some simple periodic orbits.

We are interested in the study of the stability properties considering
the parameter plane (a, b) for large values of the parameters:

a) We provide asymptotic estimates on the density of the stability
in the (a, b)-plane along lines emerging from (0, 0),

b) This density changes discontinuously at a certain direction and the
fine structure around it is investigated asymptotically,

c) The discontinuous case of square Hill’s equation is studied, where
the density behaves differently,

d) An explanation is given of the web-like structure of the exponentially
narrow stability channels, together with asymptotic estimates of the
lines forming the web.

First we display some motivating examples.
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The bifurcation diagram of Mathieu equation. Left: some local aspects.
Right: a more general plot. Parameter a (resp. b) is shown in the horizontal
(resp. vertical) axis. The shaded areas on the left correspond to unstable
(hyperbolic) domains. In successive plots we do not shadow domains.

Note that beyond being reversible, p(t) = p(−t), function p is antisym-
metric with a suitable shift: p(t − π/2) = −p(−(t − π/2)). Hence the
diagram is symmetric with respect (a, b) ↔ (a,−b).
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Some bifurcation diagrams of Hill’s equations: Ince equation

p(t) =
1

1 + µ2
cos(t)− ν

(1− ν cos(t))2
, ν =

2µ

1 + µ2
,

where the value µ = 0.6 has been used.
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Some bifurcation diagrams of Hill’s equations: Function

p(t) = cos(t) + cos(2t) + cos(4t) + 1.5 cos(6t).
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Plots of the functions p used in the two previous examples (left: Ince;
middle: function containing up to the sixth harmonic) and the next one
(non-reversible, non-antisymmetric) with

p(t) = cos(t) + cos(2t) + cos(3t− 1).

By changing the ratio b/a we can have a + bp all above or below the
axis, tangent minima and tangent maxima. All these cases play a
relevant role.
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A part of the bifurcation diagram for a non-reversible, non-antisym-
metric function p. The plot of the function is used as example of several
regions of positivity. The number of regions with a different pattern is 12.
Blue and green lines refer to tangent to minima and maxima.
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A part of the bifurcation diagram for the square wave:

ẍ + (a + b sign(sin(2πt)))x = 0.

Compare with the previous plots.



We introduce ω and χ:

a = ω2 cos(χ), b = ω2 sin(χ).

We shall also use in the future the small parameter ε = 1/ω.
Let L(χ; k) be the segment of length k from (0, 0) and argument χ.

Density of a set S: limit (if it exists)

ρ(χ) = lim
k→∞

|S ∩ L(χ; k)|
k

.

Theorem 1 Assume p of class C2, with zero average. Also assume that

p only has non-degenerate extrema. Denote pm = min p(t) and pM =
max p(t). Let Sp be the set of (a, b) for which there is stability. Then

ρ(χ) =











1 if tan(χ) is inside the interval I := (−p−1
M ,−p−1

m );
1
2 if tan(χ) is one of the endpoints of I

0 if tan(χ) is outside I.

Theorem 1 follows from next one.



Introduce q(t) = cos(χ) + p(t) sin(χ) and consider

ẍ + ω2q(t)x = 0, q(t + 1) = q(t).

For a given function q define

r = r(q) = lim
Ω→∞

1

Ω
|{ω : Hill’s equation is stable, 0 < ω < Ω}|

Theorem 2 Assuming that the function q is of class C2 with only one

absolute minimum, non-degenerate, then r satisfies the following:

r(q) =











1 if for all t one has q(t) > 0 ;
1
2 if q ≥ 0 and there exist isolated zeros with q̈ > 0;

0 if q is negative in some interval.

The first case follows from averaging/adiabatic invariance and control
of the width of the unstable domains. The third needs to split the full interval
in different pieces with emphasis on hyperbolic domains. The
middle case is much more delicate and requires the use of some special
functions. The case q < 0 everywhere is an easy undergraduate exercise.



The previous theorems lead to some natural questions.

a) Looking at q as depending on χ the function ρ(χ) has a discontinuity
at the endpoints of I or critical lines. We like to know what is fine
structure of ρ near these lines. This requires appropriate scalings.

b) How fast do we tend to the limits given by the theorem? And how
this depends on the regularity of q?

c) Which kinds of modifications have to be introduced to discuss the case of
several absolute minima with either the same or different order?

Beyond possible discussions on results on these items, it is worth to say that
the answers mainly rely on a careful use of the tools introduced to
prove the main theorems.

d) A special problem appears when there is complete lack of regularity,
as it happens for the square wave Hill’s equation. We shall present
results. Both results and methods largely differ from the ones in the
smooth case.



Below a critical line: no change of sign
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For a line below but close to the critical line the trace TrFω tends to
oscillate periodically in ω, with an amplitude tending to 2. On the
right plot we indicate ωA on the right hand side of an instability gap and
the next gap [ωB, ωC ].

Hint: Change from ẋ = −ωy, ẏ = ωq(t)x by q1/4x =
√
I cos θ,

q−1/4y =
√
I sin θ and use the fact that θ is a fast variable.



Turning to the case of change of sign we prove, in fact the equivalent
statement:

Theorem 3 Consider Hill’s equation

ẍ + ω2q(t)x = 0, q(t + 1) = q(t)

with q of class C2. Assume that q changes sign twice, in a transver-
sal way. That is, it has only one negative minimum. Then r(q) = 0,
i.e., the set of stable ω is sparse.

The general case, with several changes of sign, runs completely similar.

Hence we split the monodromy matrix as

Fω = Cu ◦M− ◦ Cd ◦M+.
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Graph of q in the case of transversal (one down, one up) sign
changes. The Poincaré map Fω is decomposed as Fω = Cu◦M−◦Cd◦M+.
Here M+,M− are the strongly elliptic resp. hyperbolic parts and Cu,
Cd are the transitions through the sign-change of q in ‘upward’ resp.
‘downward’ direction.



For the case of change of sign, the Poincaré matrices in the domains
q(t) > 0, q(t) < 0 are of the form

M+=

(

cos(ωJ) +O(ε) −q̂−1/2 sin(ωJ)+O(ε)

q̂1/2 sin(ωJ)+O(ε) cos(ωJ) +O(ε)

)

, J=

∫ t∗∗

t∗

√

q(t) dt.

M− =

(

C −q̂−1/2S

−q̂1/2S C

)

, C = cosh(c∗ω), S = sinh(c∗ω),

being c∗ a constant independent of ω and we have skipped the error
terms in M−. The value of q̂ is K̂ε2/3 for some large, fixed, K̂.

It is essential to select the transition intervals of length O(Kε2/3), in
generic cases, where K is large but fixed (independent of ε). In them we
relate the Cu, Cd matrices to Airy’s equation

d2w

dz2
+ zw = 0.



To analyse Cu, Cd and also near tangency, it is useful to introduce
generalised and shifted Airy–like equations

d2w/dz2 = −(D + |z|γ)w
with D finite, γ > 0 and fundamental solutions fγ,D(z), gγ,D(z) such
that fγ,D(0) = 1, dfγ,D/dz(0) = 0, gγ,D(0) = 0, dgγ,D/dz(0) = 1.

We analyse the local behaviour near a minimum of the form

p(t) = d + c|t|γ(1 + o(1)), ṗ(t) = γc sign (t)|t|γ−1(1 + o(1)).

(locally near reversible). In particular using suitable scalings we
obtain.

Lemma In Hill’s equation assume p has an absolute minimum located at

t = 0 and that p(t) = m+n|t|γ(1+o(1)) locally, with m < 0, n > 0, γ > 0.
For a fixed large value of a let bcrit = −a/m the critical value such

that q is tangent to 0 at 0. Then the transition from mostly stable

systems to mostly unstable is done for a range of b around bcrit with size

O(a2/(2+γ)).



What happens at exact tangency?

Theorem 4 If p behaves like m+n|t|γ(1+o(1)) at an absolute minimum,

assumed to be unique, and q̇ like γn sign(t)|t|γ−1(1 + o(1)), where γ > 0,
then the density at the critical line is 2

γ+2.
This amounts to a study of the generalised Airy equation with D = 0, i.e.
d2x/ds2 + |s|γx = 0.

Sketch of the proof:

1) After some expansions one has a fundamental solution given by

x1(s)=Γ

(

γ + 1

γ + 2

)

(z

2

)−ν1
Jν1(z), x2(s)=Γ

(

γ + 3

γ + 2

)

(z

2

)−ν2
Jν2(z),

where Jν denote Bessel functions of the first kind, ν1=−1/(γ+2),

ν2 = 1/(γ + 2) and z = 2s(γ+2)/2/(γ + 2).

2) Use Hankel’s asymptotic expansions for fixed ν and large z and

recall Γ
(

1− 1
γ+2

)

Γ
(

1
γ+2

)

= π
sin(π/(γ+2))

, to obtain an expression for the

N giving the passage near the tangency, whose elements are



n1,1 = n2,2 = − cos(2z)
sin( π

γ+2)
,

n2,1 = αΓ
(

1− 1
γ+2

)2
γ̂2 1π sin(2(z − δ)),

n1,2 = α−1Γ
(

1
γ+2

)2
γ̂−2 1

π sin(2(z + δ)),

where γ̂ = (γ + 2)
1
2− 1

γ+2 and δ = π
4 − π

2(γ+2)
.

3) Multiply N by the M+ part coming from the domain q > 0 to
obtain Fω, whose trace can be written as

sin

(

π

γ + 2

)

TrFω =

[

−2 cos(ωJ) cos(2z) + sin(ωJ){P̂ sin(2(z + δ))− Q̂ sin(2(z − δ))}
]

,

where P̂ Q̂ = 1 and the dominant term in P̂ is equal to 1.



4) Shift slightly z to z∗ such that

P̂ sin(2(z∗ + δ))− Q̂ sin(2(z∗ − δ)) = 2 sin(2z∗).

Then the trace becomes

TrFω = −2 cos(ωJ + 2z∗)/ sin(π/(γ + 2))

and the result follows easily.



What happens at the transition?

We confine our study to the generic case γ = 2 with varying D. In that
case the main role is played by the parabolic cylinder equation

d2w

dz2
+

(

1

4
z2 − a

)

w = 0.

We apply techniques similar to the ones used for the tangency to obtain

Theorem 5Near the critical line Hill’s equation, for C2 functions q with
generic minima, can be written in the form ẍ+ω2

(

ct2− d̂
ω+O(t3)

)

x=0.

Increasing d̂ we cross the line from top to bottom. Then the density of

stability as a function of c, d̂ tends to

ρ(c, d̂) =
1

π
arccos

(

tanh

(

πd̂

2
√
c

))

when ω → ∞.
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Left: The transition functions, showing the variation of ρ corresponding
to different γ for the generalised and shifted Airy equation as a
function of D. The values of γ when crossing D = 0 are 2,4,6,8, from top
to bottom. The value 2 corresponds to theorem 5. Right: Similar plots for
large order of tangency: γ = 50, 100.
We can illustrate the behaviour for some 2π periodic functions ofMathieu-
like type, like d2x/dt2+(ω2(2 sin(t/2))k+Dω4/(2+k))x=0, γ=k=2, 4, 6, 8.
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As given by Theorem 5 and seen in the previous figure for γ = 2 the function
ρ(D) ismonotonically increasing, while for γ > 2 seems to be not true.
It reaches the value 1 for intermediateD. The left plot shows log(1−ρ(D))
as a function of D for values of D on a grid.
The values ρ(D) = 1 are associated to end points of instability pock-
ets, a known fact well studied in the perturbative regime. The right
plot displays the pockets for the last example in previous page and k = 8
in the variables (a− b, b) for some large values of the parameters.



The square wave Hill’s equation
As a simple case with discontinuous p we consider the square wave.
Putting b = a(1 − δ) we analyse the transition when δ goes from 1 to 0.
Let ω21 = a(2 − δ) and ω22 = aδ. An undergraduate computation gives the
trace of the monodromy matrix as

Tr Pδ = 2 cosω1 cosω2 − (ω1/ω2 + ω2/ω1) sinω1 sinω2.

If ω2/ω1 /∈ Q we can use Birkhoff ergodic theorem to obtain

ρ(δ) =
1

4π2
λ
(

{(θ1, θ2) ∈ T2 | | cos θ1 cos θ2 −B(δ) sin θ1 sin θ2| < 1}
)

.

Here λ is the Lebesgue measure on T2 and B(δ) = 1/
√

δ(2− δ).

Lemma The function ρ is monotonically increasing in δ. The limit

values are

ρ(δ) = 1− 4(1− δ)/π2 + O((1− δ)3), for δ → 1,

ρ(δ) =
2

π2

√
2δ (− log(δ) + O(1)) , for δ → 0.
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Left: Typical shape of the curves Tr Pδ(θ1, θ2) = ±2. The area inside
the lenses corresponds to instability, i.e., where |Tr| > 2. Right: the
B curves, boundaries of the lenses are displayed in 1/16 of T2 for
δ = 0.9, 0.5, 0.1, 0.01 from top to bottom.
The point in θ1 = θ2 is given by arccos(

√

(B(δ)− 1)/(B(δ) + 1)).
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Left: behaviour of the trace as a function of
√
a for δ = 0.06. A quasi-

periodic pattern is easily seen. Right: Plot of ρ(δ) for ω2/ω1 irrational.
For completeness also the values for ω2/ω1 = n/m, m ≤ 10, 0 < n < m
are shown. Then δ has to take the value 2n2/(m2 + n2).

The plot seems to show that the value of ρ(δ) in the rational case is al-
ways larger than the values for nearby irrational cases. This is
illustrated in the next plot.
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log10(ρrational(δ) − ρ(δ)) as a function of δ for the values of δ for
which ω2/ω1 = n/m ∈ Q, 2 ≤ m ≤ 200. The values of m ≤ 50 (resp.
50 < m ≤ 100; resp. 100 < m ≤ 200) are plotted using large red (resp.
medium size green; resp. small size blue) dots. One can check that, around a
give value of δ, the difference is of order O(m−2). This can be checked even
better in the lower line which displays log10(ρrat.(δ)−ρ(δ))+2 log10(m)−5.



What about the zigzagging stability domains?

We want to study several domains of positivity. It is possible to reduce
the study to

Fω = Rk ◦Hk ◦ . . . ◦R2 ◦H2 ◦R1 ◦H1

with all the Rj being pure rotations and the Hj hyperbolic matrices
with orthogonal eigenvectors thanks to

Lemma Let A=

(

d e
f g

)

be a symplectic matrix and assume Σ=d2+e2+

f2+g2 > 2. Then there exists matrices R̄ and H satisfying A = R̄◦H and

such that R̄=

(

c s
−s c

)

is a pure rotation, where c=cos(ϕ), s=sin(ϕ), for

some suitable phase ϕ, and H is hyperbolic with orthogonal eigenvectors.

Furthermore, among all possible decompositions of A as R̄ ◦H, the H
with orthogonal eigenvectors is the one which maximises TrH.



For each hyperbolic matrix Hj let E
s
j and Eu

j the eigendirections of

Hj and Ss
j and Su

j symmetric sectors around Es
j and Eu

j of half width

1/λj, where λj is the dominant eigenvalue.

Theorem 6 Let q = a+ bp be C2 with k ≥ 1 intervals of positivity. Let

Fω as before. Then the channels of stability of Hill’s equation in the

(a, b)-plane are close to curves for which argRj = ∠(Eu
j , E

s
j+1), where

E
u,s
m denote the unstable and stable directions of Hm. Furthermore the

width of these channels is O(exp(−c(a2 + b2)1/4)) for suitable constants

c > 0 and a2 + b2 large.

It is clear that one should look for an eigenvector with eigenvalue
either +1 or −1, to be at the boundary of an stability domain.

The proof follows by an analysis of how different sectors are mapped by
the successive hyperbolic matrices and the rotations, by looking
at expanding and contracting properties and by an exponentially small
tuning of one of the rotations. In the proof we consider the case that
only one of the rotations satisfies the condition. For the general case we
proceed in a modified way.
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The geometry of the different stable/unstable directions of the
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k = 5. All the rotations are assumed to be counterclockwise.



We discuss on the lattice-like behaviour of the stability domains.

Theorem 7 Assuming p of class C2 with non-degenerate maxima and

minima, the stability channels are centered about k N-parametrised fam-

ilies of curves of the form

arg Rj(a, b) =
π

2

a + bpM
√

b|p̈(tM )|
= α + πn + o((|a| + |b|)0),

where α = ∠(Eu
j , E

s
j+1), n ∈ N ∪ {0}. These curves are approximately

parabolae, noting that the leftmost curve occurs for n = 0 and is very

close to the line corresponding to a tangent maximum.

The proof is based on a computation of argRj(a, b).
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And beyond...

We can put the question: what about the quasi-periodic case?

That is, we replace the periodic function p by a quasi-periodic one.

This appears in a natural way to study the stability properties of
invariant tori in some simple cases.

The problem appears in the form of Hill-like equation

ẍ + (a + bp(t))x = 0,

or, in an equivalent way, as 1D Schrödinger equation

−d2u/d2x + bp(x) = au.

In the periodic case we have reducibility.

In the quasi-periodic one, in general, we do not have reducibility.



We can consider the discrete Schrödinger operators
(

HbV,φx
)

n
= xn+1 + xn−1 + bV (ωn + φ)xn = axn, n ∈ Z ,

V : (T)d = (R/2πZ)d → R is a potential, d ≥ 1, b ∈ R is a coupling
parameter, φ ∈ Td is a phase, ω = (ω1, . . . , ωd) ∈ Rd is an irrational
frequency vector and a is the energy.

As a first order system
(

xn+1
xn

)

=

(

a− bV (θn) −1
1 0

)(

xn
xn−1

)

, θn+1 = θn + ω,

a quasi-periodic skew-product M .

We shall just show

• A small sample of potentials,

• Some numerical illustrations of the behaviour of the system,

• An application to nonlinear dynamics.

We also shall comment on the role of the number of frequencies.



A sample of potentials
We shall consider simple potentials like

• The Almost Mathieu, 1f: V (θ) = cos(θ), θ = nγ, γ = (
√
5 − 1)/2

understood theoretically. Used as a check of the algorithm.

• A non-Morse potential, 1fm:

V (θ) = cos θ +
1

m
(cos 2θ + cos 3θ + cos 4θ) ,

θ as before. For m > 11 this potential has only one maximum and one
minimum, both non-degenerate. We choose m = 2.

• A two-frequencies potential, 2f:

V (θ1, θ2) = cos θ1 + cos θ2, θi = nγi, γ =
(

(
√
5− 1)/2,

√
3− 1

)

.

• A three-frequencies potential, 3f:

V (θ1, θ2, θ3)=cos θ1+cos θ2+cos θ3, θi=nγi, γ=
(√

2−1,
√
3−1,

√
5−2

)

.

We display: resonances (black),KAM (white between resonances), “outer”
uniformly hyperbolic (white outside resonances), non-reducible (green).
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The Almost Mathieu model does not show any collapsed gap, the
spectrum has zero measure for b = 2, it is Cantor. As a test, in
agreement with theoretical results.
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The 1fmmodel shows several collapsed gaps of two types. When λ=0
gaps collapse for a single b: instability pockets. (λ=Lyapunov exponent).
When λ >0 some resonance tongues may collapse for a b interval and
then may reopen for a larger b. In all cases the collapse is sharp.
There are sufficiently many open gaps to infer that the spectrum is Cantor.
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For the 2f model and b large enough all gaps are collapsed and the
spectrum consists of a single spectral band with λ > 0. The collapse is
sharp. The non-smooth character also shows up at some places when
the tongue is still open and λ > 0, the tongue boundaries being also
non-smooth. For λ =0 tongue boundaries are smooth and pockets may
appear.
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For the 3f model the results are similar to the 2f one. Compare with the 1f
ones.

In all cases we have proved that for small b the boundaries are ana-
lytical, having λ = 0. The cases all Cantor gaps open are characterised.

In all cases the simulations agree with the (scarce) theoretical results.



An application to nonlinear dynamics

The quasi-periodically driven Hénon dissipative map

Consider

Ha,b,γ





x
y
θ



 =





1− (a + ε cos(θ))x2 + y
bx
θ + 2πγ (mod 2π)



 ,

that for ε = 0 is the well-known Hénon dissipative map. For ε > 0 it is
known as the q-p driven Hénon map. Here γ=golden mean.

A first problem: Which is the effect of q-periodicity on the period
doubling cascade? Is it possible to detect some lack of reducibility?

We fix the parameter b=0.4 and look for different values of ε > 0 for
increasing values of a.

Then, for ε > 0 small we have 2k invariant curves. The linearized
dynamics is described by a q-p skew product.



-0.4

-0.2

 0

-2 -1  0

-0.4

-0.2

 0

-2 -1  0

-0.4

-0.2

 0

-2 -1  0

-0.4

-0.2

 0

-1  0

-0.4

-0.2

 0

-1  0

-0.4

-0.2

 0

-1  0

Variables plotted: λ vs log10(1−a). ε=0.0001,0.001,0.01 (top), ε=0.05,
0.10,0.25 (bottom). Only a finite number of period doublings is seen.

Same phenomenon seen in many other cases from 3D diffeos to PDE.

Bifurcations in the presence of non-reducibility should be one of the
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Talk partially based on works with

H. Broer, M. Levi, J. Puig and R. Vitolo

Thanks for your attention!


