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Introduction

This poster is concerned with some aspects of the qualitative-
geometric theory of Non-smooth Systems. We study the connection
between the regularization process of non-smooth vector fields and the
singular perturbation problems. As a matter of fact, the main results in
our setting fill a gap between these areas. Exploiting such results, ap-
plications to singular perturbation problems with non-smooth reduced
system are discussed.

1. The Regularization of
Non-Smooth Systems

First we consider non-smooth differential equations ṗ = X0(p) around
p0 ∈ R

ℓ having a codimension–one submanifold Σ as its discontinuity
set. More precisely let F : (Rℓ, p0) −→ (R, 0) be a Ck function
having 0 ∈ R as a regular value with k big enough for our purposes.
We denote F−1(0) by Σ. We write Ωk = Ωk(Rℓ, F ) the space of
vector fields X0 such that

X0(q) =

{

X1
0(q) if q ∈ Σ+ = {F (q) > 0},

X2
0(q) if q ∈ Σ− = {F (q) 6 0},

(1)

where X1
0 = (f1, ..., fℓ), X

2
0 = (g1, ..., gℓ) ∈ X k and X k, k ≥ 1,

denotes the set of Ck vector fields defined on Rℓ. The topology on X k

is the usual Ck topology. We write X0 = (X1
0 , X

2
0) ∈ Ωk(Rℓ, F ) ⊆

X k × X k which we will accept to be multivalued at the points of Σ.
We consider the product topology on Ωk(Rℓ, F ).
Filippov has considered differential systems with discontinuities in the
right–hand sides. We are allowing the case where such discontinuities
occur on an algebraic variety Σ. The regions in Σ are classified as:

• Sliding Region: Σsl = {p ∈ σ : X1
0F (p) < 0, X2

0F (p) > 0} ⊂ Σ.

In this case any orbit which meets Σsl remains tangent to Σ for
positive time. This region is the part of Σ on which X1

0 and X2
0

point inward to Σ.

• Escaping Region: Σes = {p ∈ Σ : X1
0F (p) > 0, X2

0F (p) < 0} ⊂
Σ. In this case any orbit which meets Σes remains tangent to Σ for
negative time.

• Sewing Region: Σsw = {p ∈ Σ : (X1
0F (p)).(X

2
0F (p)) > 0} ⊂ Σ.

In general a point in phase space which moves on an orbit of X0
reaches a point in Σsw crosses Σ.

On ΣS = Σsl ∪ Σes the flow slides on Σ; the flow follows a well
defined smooth vector field XS called sliding vector field. It is
tangent to Σ and defined at q ∈ ΣS by XS(q) = m − q with m
being the point where the segment joining q +X1

0(q) and q +X2
0(q)

is tangent to Σ.

An approximation of the discontinuous vector field X0 = (X1
0 , X

2
0) ∈

Ωk(Rℓ, F ) by a one-parameter family of continuous vector fields
will be called a regularization of X0. The main problem then is
to translate certain dynamical properties of the original one to the
regularized system. What is familiar may or may not be a matter of
taste, at least it depends a lot on the dynamical properties of one’s
interest.

Let X0 = (X1
0 , X

2
0) ∈ Ωk(Rℓ, F ). Sotomayor and Teixeira, introdu-

ced the ε-regularization process. More precisely, we consider a one–
parameter family of smooth vector fields Xε, ε > 0, such that:

•Xε is equal to X
1
0 in all points of Σ+ whose distance to Σ is bigger

than ε;

•Xε is equal to X
2
0 in all points of Σ− whose distance to Σ is bigger

than ε.

A C∞ function ϕ : R −→ R is a transition function if lim
x→−∞

ϕ(x) =

−1 , lim
x→∞

ϕ(x) = 1 and ϕ′(x) > 0 for all x ∈ R. The ϕ–

regularization of X0 = (X1
0 , X

2
0) is the 1–parameter family Xε ∈ Cr

given by

Xε(q) =

(

1

2
+
ϕε(F (q))

2

)

X1
0(q) +

(

1

2
−
ϕε(F (q))

2

)

X2
0(q). (2)

We assume that ϕε(x) = ϕ(x/ε), for ε > 0. Assuming that
F−1(0) is represented, locally around a point p ∈ Σ, by the func-
tion F (x1, ..., xℓ) = x1 and denoting the vector fields X1

0 and X2
0 by

X1
0 = (f1, ..., fℓ) and X

2
0 = (g1, ..., gℓ) we have that the trajectories

of the regularized vector field Xε are the solutions of the differential
system

ẋi =
fi + gi

2
+ ϕ(

x1
ε
)
fi − gi

2
; i = 1, ..., ℓ; ε̇ = 0 (3)

where ϕ : R → R is a transition function. We transform this system
into a singular perturbation problem Hη by considering x1 = η cosψ,
and ε = η sinψ, with η ≥ 0 and ψ ∈ [0, π]

(Hη) :

{

ηψ′ = α1(η, ψ, x2, ..., xℓ)
x′i = αi(η, ψ, x2, ..., xℓ), i = 2, ..., ℓ

. (4)

Theorem 0.1. ( Regular Case) The sliding region ΣS ⊂ Σ is
homeomorphic to the slow manifold α1(0, ψ, x2, ..., xℓ) = 0 and the
sliding vector field XS is topologically equivalent to the so called
reduced problem

0 = α1(0, ψ, x2, ..., xℓ), x′i = αi(0, ψ, x2, ..., xℓ), i = 2, ..., ℓ.

Example ConsiderX1
0(x1, x2) = (3x22−x2−2, 1), andX2

0(x1, x2) =

(−3x22−x2+2,−1).We assume that F (x1, x2) = x1. The regularized
vector field is

Xε =

(

1

2
+
1

2
ϕ(
x1
ε
)

)

(3x22−x2−2, 1)+

(

1

2
−

1

2
ϕ(
x1
ε
)

)

(−3x22−x2+2,−1).

Applying our technique we get the singular perturbation problem

ηψ̇ = − sinψ(−x2 + ϕ(cotψ)(3x22 − 2)), ẋ2 = ϕ(cotψ).

The slow manifold is given implicitly by ϕ(cotψ) = x2
3x2

2
−2

which defines two functions s1(ψ) =
1 +

√

1 + 24ϕ2(cotψ)

6ϕ(cotψ)
and

s2(ψ) =
1−

√

1 + 24ϕ2(cotψ)

6ϕ(cotψ)
. The function s1(ψ) is increasing,

s1(0) = 1, lim
ψ→π

2

−
s1(ψ) = +∞, lim

ψ→π
2

+
s1(ψ) = −∞ and s1(π) = −1.

The function s2(ψ) is increasing, s2(0) = −
2

3
, lim
ψ→π

2

s2(ψ) = 0 and

s2(π) =
2

3
. The slow manifold is the union of three simply connected

pieces, one of them connecting two fold points and the others having
only one fold point on the boundary.

The usual definition of sliding vector field can not be used

in the case when 0 is not a regular value of F . We propose

an alternative way by using the blow up techniques and the

regularization.

2. Slow fast systems on algebraic
varieties

Let (0, 0, 0) ∈ U ⊂ R
3 be an open set and F : U → R a polyno-

mial function. Suppose (0, 0, 0) ∈ Σ = F−1(0), Σ+ = F−1(0,∞)
and Σ− = F−1(−∞, 0). We suppose that there exists C∞–
diffeomorphism Ψ : S → F−1(0) where S is one of the following
subsets of R3:

(a)R = {(x, y, z) ∈ R
3; z = 0} (regular case);

(b)D = {(x, y, z) ∈ R
3; xy = 0} (double crossing);

(c) T = {(x, y, z) ∈ R
3; xyz = 0} (triple crossing) ;

(d) C = {(x, y, z) ∈ R
3; z2 − x2 − y2 = 0} (cone);

(e)W = {(x, y, z) ∈ R
3; zx2 − y2 = 0} (Whitney’s umbrella).

Definition 0.1.We say that p ∈ Σ is a simple discontinuity if there
exists an open set U ⊆ R

ℓ with p ∈ U and a differential function
F : U → R such that 0 is a regular value of F and F−1(0) = Σ∩U.

We denote X0 ∈ Ω(U ,R) if the discontinuous differential system
ṗ = X0(p), p ∈ U \Σ, has switching manifold Σ diffeomorphic to R.
Analogously we denoteX0 ∈ Ω(U ,D), X0 ∈ Ω(U , T ), X0 ∈ Ω(U , C)
and X0 ∈ Ω(U ,W).

Theorem 0.2. ( Double Crossing) Consider a discontinuous vector
field X0(x1, x2, x3) which is determined by 4 smooth vector fields:
X1
0 on U1 = {x2 > 0, x3 > 0}; X2

0 , on U2 = {x2 < 0, x3 >

0}; X3
0 on U3 = {x2 < 0, x3 < 0}; and X4

0 on U4 = {x2 >

0, x3 < 0}. Consider the map φ : R × S1 × R
+ → R

3 given by
φ(x1, θ, r) = (x1, r cos θ, r sin θ). The vector field X0 determined by

Xi
0, i = 1, ..., 4 on φ−1(Ui) induced by φ on R × S1 × R

+ has only
simple discontinuities.

0
π
2π

3π
2

S1 × R
+

S1

S2
=⇒

The sliding vector field idealized by Filippov can not be uniquely ex-
tended for intersecting switching discontinuous manifold. However,
the blow up method developed by us can be applied for this kind of
the surface. Since the method produces a differential system which is
equivalent to the sliding vector field for the regular case, our method
can be considered like a generalization of the Filippov convention.
The number of blow ups necessary to get a sliding vector field like the
idealized by Filippov:

• Ω(U ,F) :1

• Ω(U ,D) : 2

• Ω(U , C) : 2

• Ω(U , T ) : 3

• Ω(U ,W) : 3

3. Slow flow and sliding mode
Consider the following system.

ẋ1 = A(x1, x2, x3) ẋ2 = B(x1, x2, x3) εẋ3 = −x3 (5)

where

A(x1, x2, x3) =

{

f1(x1, x2, x3), if x1 ≥ 0
f2(x1, x2, x3), if x1 ≤ 0

B(x1, x2, x3) =

{

g1(x1, x2, x3), if x1 ≥ 0
g2(x1, x2, x3), if x1 ≤ 0

and ε ≥ 0. Suppose that fi, gi, i = 1, 2, are of class Ck with k ≥ 1,
on the open set U ⊆ R

3 and that 0 ∈ U . We will denote Xi
0 =

(fi, gi,−
x3
ε ) and X0 = (X1

0 , X
2
0) ∈ Ωkε(U).

The switching manifold is given by Σ = {(x1, x2, x3) ∈ U ; x1 = 0}
and the slow manifold is M = {(x1, x2, x3) ∈ U ; x3 = 0}. We have
that Σ and M are 2–dimensional orientate manifolds.

The trajectories of the reduced problem are the trajectories of the
discontinuous system

(x1, x2, x3) ∈ M, (ẋ1, ẋ2) =

{

Π ◦X1
0 = (f1, g1) if x1 ≥ 0

Π ◦X2
0 = (f2, g2) if x1 ≤ 0

(6)
where Π denotes the projection on the (x1, x2)-plane Π(x1, x2, x3) =
(x1, x2).
There exists a two dimensional singular perturbation problem

ψ′ = α(η, ψ, x2), x2
′ = ηβ(η, ψ, x2), (7)

with η ≥ 0, ψ ∈ (0, π), x2 ∈ Σ ∩ M and α and β of class Cr

such that the sliding region (Σ ∩ M)S is homeomorphic to the slow
manifold α(0, ψ, x2) = 0 of (7) and the sliding vector field XΣ∩M

and the reduced problem are topologically equivalent.

Proposition 0.1. Let X0 = (X1
0 , X

2
0) ∈ Ωkε(U) be a non-smooth

system. The sliding region Σslr (resp.escaping, sewing) of the re-
duced problem (6) (ε = 0) is contained in the sliding region Σsl

(resp.escaping, sewing) of system (5) (ε 6= 0). Moreover, if p ∈
Σ∩M∩ΣSr is on the sliding region of the reduced problem (6) then
there exists an open set V ⊆ ΣS such that p ∈ V ⊇ ΣSr .

Our last theorem says that the sliding mode associated to the system

Xi = (fi, gi,−
x3
ε
), i = 1, 2 is a smooth slow-fast system. Moreover,

the reduced problem associated to this smooth slow-fast system
coincides with the sliding vector field associated to the reduced
problem of (6). It implies, via the classical Fenichel’s Theorem that
any structure of the sliding vector field associated to the reduced
problem of (6) which persists under regular perturbation persists
under singular perturbation.

Proposition 0.2. The sliding vector field associated to Xi
0 =

(fi, gi,−
x3
ε
), i = 1, 2, is a smooth slow-fast system of the form

ẋ2 = γ(x2, x3), εẋ3 = −x3,where γ is a Ck map. Moreover the dyna-
mics of the reduced problem is given by ẋ2 = γ(x2, x3), 0 = −x3,
and coincides with the dynamics of the sliding vector field associated
to the reduced problem (6) .
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