Firing map for periodically and almost-periodically driven integrate-and-fire models: a dynamical systems approach.

Justyna Signerska,^{1,2} Wacław Marzantowicz³

¹ Institute of Mathematics, Polish Academy of Sciences
² Faculty of Applied Physics and Mathematics, Gdańsk University of Technology
³ Faculty of Mathematics and Computer Sci., A. Mickiewicz University of Poznań

Introduction

The integrate-and-fire (IF) models are used mainly in neuroscience to describe nerve-membrane voltage response to a given input:

$$\dot{x} = F(t, x) \quad F : \mathbb{R}^2 \to \mathbb{R}$$
$$\lim_{t \to s^+} x(t) = 0, \quad \text{if} \quad x(s) = 1$$

(1)

(2)

Proposition. Suppose that φ_n is a sequence of homeomorphisms with irrational rotation numbers ϱ_n which converges in the metric of $C^0(S^1)$ to the homeomorphism φ with irrational rotation number ϱ . Then the corresponding displacement distributions $\mu_{\Psi_n}^{(n)}$ with respect to the invariant measures $\mu^{(n)}$ converge weakly to μ_{Ψ} :

$$\iota^{(n)}_{\Psi_n} \Longrightarrow \mu_{\Psi}$$

Moreover, if the conjugacy $\gamma \in C^1(S^1)$ and the set of critical points of Ψ is of Lebesque measure 0, the convergence of distributions is uniform on the class of all intervals $I \subset [0, 1]$ ([7]).

For $n \in \mathbb{N}$ and $z = \exp(2\pi i x) \in S^1$ define a sample displacements distribution:

$$\omega_{n,x} = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\Psi(\Phi^i(x))}$$

If $\varphi : S^1 \to S^1$ has finitely many periodic points $\{z^1, z^2, \ldots, z^r\}$, then given $\varepsilon > 0$ for each interval (z^k, z^{k+1}) between the two consecutive periodic points we can define a point a_k called ε -basins shred, which is used to find the smallest number N satisfying the statement of the above theorem: Suppose that the points z^k and z^{k+1} are, respectively, backward and forward attracting under φ^q for $z \in (z^k, z^{k+1})$. For $m \in \mathbb{N}$ define the functions

$$\tau_m^+(z) := \max_{0 \le i \le q-1} |\varphi^{mq+i}(z) - \varphi^i(z^{k+1})|, \quad \tau_m^-(z) := \max_{0 \le i \le q-1} |\varphi^{-mq-i}(z) - \varphi^{q-i}(z^k)|$$

and the subsets of $[z^k, z^{k+1}]$, $U_m^+ := \{z : \tau_m^+(z) < \varepsilon\}$ and $U_m^- := \{z : \tau_m^-(z) < \varepsilon\}$. There exists the smallest natural number $m = m(\varepsilon)$ such that $U_{m(\varepsilon)}^+ \cap U_{m(\varepsilon)}^- \neq \emptyset$. Then the ε -basins shred is defined as the unique point $a_k \in U_{m(\varepsilon)}^+ \cap U_{m(\varepsilon)}^-$ such that $\tau_{m(\varepsilon)}^+(a_k) = \tau_{m(\varepsilon)}^-(a_k)$.

The question is to describe the sequence of consecutive resets $\{t_n\}$ as iterations of some map, called the *firing map*, and the sequence of interspike-intervals $\{t_{n+1} - t_n\}$ as a sequence of displacements along a trajectory of this map.

Let $x(\cdot; t, 0)$ denote a solution of (1) satisfying the initial condition (t, 0) and $D_{\Phi} = \{t \in \mathbb{R} : \exists_{s>t} x(s; t, 0) = 1\}$. For equation (1) we define a map $\Phi : D_{\Phi} \to \mathbb{R}$:

Definition: Firing map

 $\Phi(t) := \inf\{s > t : x(s; t, 0) = 1\}$

Consecutive spike-timings t_n are then given as:

 $t_n = \Phi^n(t) = \inf\{s > \Phi^{n-1}(t) : x(s; \Phi^{n-1}(t), 0) = 1\}$

The most popular model is the Leaky Integrate-and-Fire

 $\dot{x} = -\sigma x + f(t), \quad \sigma > 0$

which for $\sigma = 0$ reduces to the Perfect Integrator $\dot{x} = f(t)$.

Fact ([4]). If the function F in (1) is continuous and periodic in t, then the firing map Φ is a lift of a degree-1 circle map $\varphi : S^1 \to S^1$.

Definition: Firing rate & average interspike interval

1. firing rate $FR(t) := \lim_{n \to \infty} \frac{n}{\phi^n(t)}$ 2. average interspike interval aISI $(t) := \lim_{n \to \infty} \frac{\phi^n(t)}{n}$

Periodic drive

Theorem. Let φ be a homeomorphism with irrational rotation number and the displacement distribution μ_{Ψ} with respect to the invariant measure μ . For every $\varepsilon > 0$ there exists a neighborhood $\mathcal{U} \subset C^0(S^1)$ of φ such that for every homeomorphism $\tilde{\varphi} \in \mathcal{U}$ and every $x_0 \in [0, 1]$ we have

$$F(\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\delta_{\widetilde{\Psi}(\widetilde{\Phi}^i(x_0))},\mu_{\Psi})<\varepsilon$$

where d_F is the Fortet-Mourier metric. Consequently,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\widetilde{\Psi}(\widetilde{\Phi}^i(x))} \Longrightarrow \mu_{\Psi} \quad \text{as } \widetilde{\varphi} \to \varphi \text{ in } C^0(S^1)$$

Regularity of the displacement sequence

Some classical results in topological dynamics ([3]) allowed us to show that even in case of irrational rotation number the displacement sequence exhibits a kind of regularity:

Proposition. If φ is transitive, then for all $z \in S^1$ the displacement sequence $\{\eta_n(z)\}$ is *almost strongly recurrent*, i.e.

 $\forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n \in N} \forall_{k \in \mathbb{N} \cup \{0\}} \exists_{i \in \{0, 1, \dots, N\}} |\eta_{n+k+i}(z) - \eta_n(z)| < \varepsilon$

If φ is not-transitive, then the sequence $\{\eta_n(z)\}$ is almost strongly recurrent for all $z \in \Delta$.

Semi-periodic circle homeomorphism:

A circle homeomorphism with rational rotation number which is not conjugated to a rotation is called *semi-periodic*.

Interspike intervals for IF models

Interspike intervals are said to be used in information encoding by neurons. Consider the LIF model (2) and assume that f is continuous, periodic with period T = 1 and $f(t) - \sigma > 0$ for all t. Then

Proposition. The firing map Φ is a lift of an orientation preserving homeomorphism. Consequently, there exists a unique firing rate $FR(t) = 1/\rho(\Phi)$, independent of the initial condition (t, 0).

By $ISI_n(t)$ denote a sequence of interspike intervals for a spike train arising from an initial condition (t, 0). Suppose that $FR(t) \in \mathbb{R} \setminus \mathbb{Q}$. Then:

• the sequence $ISI_n(t)$ is dense in a set S depending on the displacement map (which is simply the interval $\Psi([0, 1])$ whenever $f \in C^2(S^1)$). Moreover, the interspike interval distribution μ_{ISI} with respect to the unique invariant ergodic measure μ changes continuously with parameters and is well approximated by sample interspike interval distributions (in d_F metric).

Example. $\dot{x} = -x + 2(1 + \beta \cos(2\pi t))$

• $\beta = 0 \implies ISI_n(t) = \varrho = \ln(0.5) \approx 0.6931$

When the function F is periodic in t, the problem of describing interspike intervals is covered by investigating displacement sequences of circle maps.

Displacement sequence of an orientation preserving circle homeomorphism

Let $\varphi : S^1 \to S^1$ be an orientation preserving circle homeomorphism, $\Phi : \mathbb{R} \to \mathbb{R}$ its lift (where \mathbb{R} covers S^1 by the covering projection $\mathfrak{p} : x \mapsto \exp(2\pi i x)$ and $\Psi(x) := \Phi(x) - x$ the displacement function of Φ . By $\varrho(\varphi)$ denote the rotation number of φ .

Definition: Displacement sequence of a point $z = \exp(2\pi i x) \in S^1$

 $\eta_n(z) := \Psi(\Phi^{n-1}(x)) \mod 1 = \Phi^n(x) - \Phi^{n-1}(x) \mod 1, \ n \in \mathbb{N}$

A simple observation gives:

• If φ is a rotation by $2\pi \rho$, where ρ can be either rational or irrational, then the sequence $\eta_n(z) = \rho$ is constant.

• If φ is conjugated to the rational rotation by $2\pi \varrho$, where $\varrho = \frac{p}{q}$, then the sequence $\eta_n(z)$ is q-periodic.

Homeomorphims with irrational rotation number:

Let $\rho(\varphi) \in \mathbb{R} \setminus \mathbb{Q}$. If φ is not transitive, by $\Delta \subset S^1$ denote the unique minimal set of φ and by $\widetilde{\Delta}_0$ its lift to [0, 1).

Proposition. If φ is transitive, then for every $z \in S^1$ the sequence $\eta_n(z), n \in \mathbb{N}$, is dense in the interval $S = \Psi([0,1]) = \Omega([0,1])$, where $\Omega(x) := \Gamma^{-1}(x + \varrho) - \Gamma^{-1}(x)$ and Γ is a lift of a homeomorphism γ conjugating φ with the rotation r_{ϱ} . S is the support of the distribution μ_{Ψ} of displacements with respect to the invariant measure μ :

 $\mu_{\Psi}(A) := \mu(\{x \in [0,1] : \Phi(x) - x \in A\}) = \Lambda(\Omega^{-1}(A)), \ A \subset \mathbb{R}$

Proposition. For a semi-periodic circle homeomorphism φ the sequence $\eta_n(z)$ is asymptotically periodic. Precisely, if $\varrho(\varphi) = p/q$ then for every $z \in S^1$:

 $\forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} \forall_{k \in \mathbb{N}} \quad |\eta_{n + kq}(z) - \eta_n(z)| < \varepsilon$

Theorem. Let $\rho(\varphi) = \frac{p}{q}$. Then for every $\varepsilon > 0$ there exists N such that for every $z \in S^1$ the sequence $\{\eta_n(z)\}_{n=-\infty}^{\infty}$ satisfies at least one of the following statements: 1) $\forall_{n>N} \forall_{l\in\mathbb{N}} |\eta_{n+lq}(z) - \eta_n(z)| < \varepsilon$ 2) $\forall_{n>N} \forall_{l\in\mathbb{N}} |\eta_{-(n+lq)}(z) - \eta_n(z)| < \varepsilon$

Almost periodic drive

Assume now that f in (2) is not continuous but only locally integrable (which might be the case in some applications). For $f \in L^1_{\text{loc}}(\mathbb{R})$ we redefine the notion of the firing map as follows:

$$\Phi(t) := \inf\{s > t : s \text{ satisfies } e^{\sigma t} = \int_t^s [f(u) - \sigma] e^{\sigma u} du\}$$

Under the assumption that $\underline{f(t) - \sigma > \delta}$ a.e. for some $\delta > 0, \Phi : \mathbb{R} \to \mathbb{R}$ is a homeomorphism.

Definition: Stepanov & **Bohr almost periodic functions**

Suppose that $FR(t) \in \mathbb{Q}$. Then:

• if the firing phase map $\varphi : S^1 \to S^1$ is conjugated to the rational rotation then the sequence $ISI_n(t)$ is periodic. In particular

- 1. For Perfect Integrator $ISI_n(t)$ is periodic whenever $T = \int_0^1 f(u) \, du \in \mathbb{Q}$.
- 2. For Leaky Integrate-and-Fire $\dot{x} = -\sigma x + \frac{1}{1-e^{-q}} \operatorname{ISI}_n(t)$ is constant: $\operatorname{ISI}_n(t) = q$.
- if φ is semi-periodic then $ISI_n(t)$ is asymptotically periodic.

This is a "typical" case for the LIF model. It is connected with a phenomenon called *phase-locking*.

In [6] we gave detailed description of the regularity of Φ for $f \in L^1_{loc}(\mathbb{R})$ under weaker assumptions and provided a formal framework for investigating the sequence of interspike intervals in case of almost periodic drive.

Outlooks:

Generation of $ISI_n(t)$ for an almost periodic input function f(t) using Bohr compactification of the reals \mathbb{R} :

 $\mathbb{R} \simeq G \subset \prod S_{\xi}^1, \quad \mathfrak{p}_{\xi} : \mathbb{R} \to S_{\xi}^1, \mathfrak{p}_{\xi}(t) = e^{\imath \xi t}$

If φ is not transitive, then the distribution μ_{Ψ} is concentrated on $\widehat{S} = \Psi(\widetilde{\Delta}_0)$. Moreover, for $z \in S^1 \setminus \Delta$ and $w \in \Delta$ there exist increasing sequences $\{n_k\}$ and $\{\widehat{n}_k\}$ such that for every $l \in \mathbb{Z}$

 $\lim_{k \to \infty} \eta_l(\varphi^{n_k}(z)) = \eta_l(w) \text{ and } \lim_{k \to \infty} \eta_l(\varphi^{-\widehat{n}_k}(z)) = \eta_l(w)$

The measure $\mu_{\Psi}(A)$ can be approximated by measuring the average frequency of points $\Phi^{i}(x)$ with values $\Psi(\Phi^{i}(x))$ in A along a trajectory $\{\Phi^{i}(x)\}, i \in \mathbb{N}$:

 $\frac{\sharp\{0\leq i\leq n-1:\ \Psi(\Phi^i(x))\in A\}}{n}\to \mu_\Psi(A),$

where the convergence with $n \to \infty$ is uniform with respect to x.

Theorem. The mapping $\varphi \mapsto \gamma$ assigning to a homeomorphism φ with irrational rotation number ϱ a map $\gamma : S^1 \to S^1$ semiconjugating (or conjugating, if φ is transitive) φ with the rotation r_{ϱ} , is a continuous mapping from $C^0(S^1)$ into $C^0(S^1)$ -topology. • A function $f : \mathbb{R} \to \mathbb{R}$, $f \in L^p_{loc}(\mathbb{R})$, is Stepanov almost periodic, if for any $\varepsilon > 0$ the set $SE\{\varepsilon, f(t)\}$ of all the numbers τ such that $\|f(t+\tau) - f(t)\|_{St,r,p} < \varepsilon$ is relatively dense, where

$$\|f\|_{\mathbf{St.,r,p}} := \sup_{t \in \mathbb{R}} \left[\frac{1}{r} \int_{t}^{t+r} |f(u)|^{p} du\right]^{1/p}, \quad r > 0, 1 \le p < \infty$$

• A continuous function $f : \mathbb{R} \to \mathbb{R}$ is Bohr (or uniformly) almost periodic, if for any $\varepsilon > 0$ the set $\mathbb{E}\{\varepsilon, f(t)\}$ of all the numbers τ such that for all $t \in \mathbb{R} |f(t + \tau) - f(t)| < \varepsilon$ is relatively dense.

Theorem. Let $f : \mathbb{R} \to \mathbb{R}$ be a Stepanov almost periodic function. Then the firing map Φ induced by the model (2) has Bohr almost periodic displacement. In particular, Φ is then uniformly continuous.

This theorem is analogous to the fact that a continuous and periodic function f gives rise to a firing map with periodic displacement.

Corollary. Under the above assumptions, for the system $\dot{x} = -\sigma x + f_{\lambda}(t), \lambda \in \Lambda \subset \mathbb{R}^n$, there exists a unique firing rate FR(t) = r, which is a continuous function of the input parameters λ .

 $\xi \in \mathbb{R}$

 including stochasticity in the analysis (e.g. random firing threshold; stochastic input)

References

- [1] J. Andres, A. M. Bersani and R. F. Grande, *Hierarchy of almost-periodic function spaces*, Rend. Mat. Appl. 26 (2006), 121–188.
- [2] R. Brette, Dynamics of one-dimensional spiking neuron model, J.Math.Biol. 48 (2004), 38–56.
- [3] W.H. Gottschalk, *Minimal sets: An introduction to topological dynamics*, Bull. Amer. Math. Soc. **64** (1958), 336–351.
- [4] J. P. Keener, F. C. Hoppensteadt, J. Rinzel, *Integrate-and-Fire Models of nerve membrane re*sponse to oscillatory input, SIAM J. Appl. Math. **41** (1981), 503–517.
- [5] J. Kwapisz, Poincaré rotation number for maps of the real line with almost periodic displacement, Nonlinearity **13** (2000), 1841—1854.
- [6] W. Marzantowicz, J. Signerska, *Firing map of an almost periodic input function*, Discrete Contin. Dyn. Syst. Suppl. (2011), 1032–1041.
- [7] W. Marzantowicz, J. Signerska, *Displacement sequence of an orientation preserving circle homeomorphism* (submitted)

