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Theorem 1.3. The class of all Lotka-Volterra quadratic differential systems has a
total of 112 topologically distinct hase portraits. Among these, 60 portraits are for
systems i Three sz‘mpée mvamamlﬁ hnes; 27 are portraits of systems with invariant
lines of total multiplicity at least four; 5 phase portraits are for Lotka-Volterra
systems which have the line at infinity filled up with singularities; 20 phase portraits
are for the degenerate systems.

(i) Consider the 13 configurations Config. 3.4, 3 € {1,...,13} (see Definition
2.2) with_three simpie jpygriant lines given in Fig. 4. For each configuration
Config. 3.j we have a number n; of topologically distinct phase portraits. Then
Zjil n; = 65 and the 65 phase portraits (not necessarily topologically distinct) are
given in Fig. 5. The necessary and sufficient affine invariant conditions for the
realization of each one of these portraits are given in Table 3.

(i) Consider the 34 configurations of Lotka-Volterra systems Config. 4.1,...,
Config. 6.8 with invariant lines of total multiplicity at least four given in Fig.

4. For each one of these 34 configurations we have a num er g, 1 € {1,...,34}
of topologically distinct phase portraits. Then Z?il m; = 59 and the 59 phase

portraits (not necessarily topologically distinct) are given in Fig. 8. The necessary
and sufficient affine invariant conditions for the realization of each one of these
portraits are given in Table 3.
; (111) Consider theiconﬁ.qumt?lons of Lotka-Volterra systems Config. C2.5, J €
{1,2,5,7} with the line al infinity filled up with singularities given in Fig. 2. For
each one of these 4 configurations we nave a unique pnase portrait, excepl for the
configuration Config. Ca.j for which we have two phase portraits. The 5 phase
portraits are topologically distinct and they are given in Fig. 1. The necessary and
sufficient affine invariant conditions for the realization of each one of these portraits
are given in Table 3.
(w) Consider the 14 configurations Config. LVa.j, J € {1,...,14} given in Fig.

2, of the degenerate quadratic Lotka- Volterra systems. For each configuration Con-
fig. LVg4.7 we have G numzer 5; of topologically distinct phase portraits. Then
2;4:1 s; = 20 and the 20 phase portraits given in Fig. 6 are topologically distinct.

The necessary and sufficient affine invariant conditions for the realization of each
one. of these portraits are given in Table 6.

(v) Of the 149 phase portraits obt_b,z'ned by listing those occurring in the classes
(i)-(w), only 112 are topologically distinct (see Diagrams 1-6).

T
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Theorem 3.15. Consider an LV-system (S). I. Then (S)

1) has only real invariant lines;

) has only real singularities, at least two of them at infinity;

) has no finite singularities of multiplicity three;

) has a focus only if (S) has exactly three invariant lines, all simple;
) has no weak foci,

(6) has no limit cycles.

II. In the generic case when the system (S) has exactly three invariant lines all
simple, (S) has no centers.

Theorem 3.16. I. Of 112 topologically distinct phase portraits of LV-systems only
18 possess graphics and all of them occur in QSL;, i € {3,4}. More precisely we
have:

(i) 8 distinct isolated graphics occur in systems with exactly three invariant
lines, all simple. All of them are triangles with an infinite side and they
surround o focus.

(ii) 4 distinct isolated graphics occur in systems in QSL, all of them are trian-
gles, one finite and three with an infinite side and they surround a center.

(iii) non-isolated graphics occur in 6 topological distinct phase portraits of sys-
tems in QSL,. In each one of them we have two infinite families of graphics.
These graphics are: (a) homoclinic loops with either a finite singularity or
with an infinite singularity; (b) limiting triangles of families of homoclinic
loops.
II. Infinite families of degenerate graphics occur in: (a) LV-systems with all
points at infinity singular, excepting the systems with the phase portrait Picture
Cy.5(a), and (b) degenerate LV-systems.

Proof. I. The proof of the points (i) and (ii) results from Fig. 5 and Fig. 3 respec-
tively.



EJDE-2012/64 GLOBAL TOPOLOGICAL CLASSIFICATION /‘g

3.3. Topologically distinct phase portraits of LV-systems. To find the exact
number of topologically distinct phase portraits of LV-systems, we use a number
of topological invariants for distinguishing (or identifying) phase portraits. We list
below the topological invariants we need and the notation we use.

I. Singularities, invariant lines, multiplicities and indices:

e N = total number of all singularities (they are all real) of the systems;
Ny
T

multiplicity Z,,;

e deg J = the sum of the indices of all finite singularities of the systems;

;if‘f = total number of affine invariant lines filled up with singularities;

o N, = total number of infinite singularities;

o = the number N of all distinct finite singularities having a total

I1. Connections of separatrices:

#SC? = total number of connections of a finite saddle to a finite saddle;

e #SC% = total number of connections of a finite saddle to an infinite saddle;

o #SCSN =total number of connections of a finite saddle to an infinite
saddle-node;

e #SC? = total number of connections of a finite saddle-node to a finite
saddle;

e #SC5, = total number of connections of a finite saddle-node to an infinite
saddle;

o #SCSN = total number of connections of a finite saddle-node to an infinite
saddle-node;

o #S Cfn(hh) = total number of separatrices dividing the two hyperbolic sec-
tors of finite saddle-nodes, going to infinite saddles;

® #SC’fT{\(fhh) = total number of separatrices dividing the two hyperbolic sec-
tors of finite saddle-nodes connecting with separatrices of infinite saddle-
nodes.

° #Sep(‘g}%{) = total number of separatrices of infinite saddle-nodes located

in the finite plane and dividing the two hyperbolic sectors.

[11. The number of separatrices or orbits leaving from or ending at a singular point:

o M, = max{sep(72)| 7 is a node}, where sep(7i) is the number of separatri-
ces leaving from or ending at a finite node 7,

o MZ% = max{sep(5n)| 57 is a node}, where sep(37) is the number of sepa-
ratrices leaving from or ending at a finite saddle-node s7;

e M, = max{orb(p)|p is a finite singularity}, where orb(p) is the number
of orbits leaving from or arriving at p;

e Mogrg = max{orb(p1,p2)| p1,p2 are infinite singularities}, where orb(p1,p2)

is the number of orbits connecting p; with ps.

Using the topological invariants listed above we construct the following global
topological invariant Z = (Z1,Z2,Z3), where

N sin
I] == (N, (Tf>’dng,N[L§, oo),
T, = (#Sc;, #SCS $SCSN #8C, #8CS,, #SCEN , #5CS, uny» #sepgiﬁ,)),

Ts = (MZ,, M5, Mors, Mors ),

sep? +"tsepr
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Table 5

Configu—

ration

Necessary and suffi-

cient conditions

Additional conditions
for phase portraits

Phase
portrait

Config. 3.1

n > 0, uo B3 Hg # 0,

By =0 and
either 6 #£0 or

(6 =0 & NH7 # 0)

po < 0,
K<0

Wy >0

B3U; < 0,U; <0

Picture 3.1(al)

BsUy <0,U2 >0

Picture 3.1(a2)

BsU; >0

Picture 3.1(a3)

Wi <O

Picture 3.1(52)

Ho <O
K>0

W4 >0 or
Wis=0&
W3 >0

BsU; < 0

B3U; > 0,U >0,
Ug >0,U3 >0

Picture 3.1(b1)

B3iU; > 0,Uz2 <0,
B3sHyq >0

BaU; > 0,Uz > 0,
Us >0,Us<0

Picture 3.1(b2)

BsU; > 0,Uz <0,
B3Hy4 <0

BiU, > 0,Ua >0,
Uy <0

Picture 3.1(b3)

Wy <0 or
Wy =0&
Wi <0

B3U; <0,U3 <0

BiU; > 0,U3 >0,
Uy >0,U3>0

Picture 3.1(1;1)

B3U, > 0,U; < 0/

BiU; > 0,U2 >0,
Uys >0,U3«<0

Picture 3. 1(122)

BiU; > 0,U2 >0,
Us <0

Picture 3.1(;;3)

B3U; <0,Ua >0

Picture 3.1(;)4)

po >0

W4 >0 or
Wy=0&
W3 >0

Uz <0,B3H14 <0

Uz >0,U4 >0,
BisU; >0

Picture 3.1(c1)

Uy <0,B3Hi14 >0
BsU; <0

Picture 3.1(c2)

Uy <0,B3H14 >0
BsU; >0

Uy >0,U; <0

Picture 3.1(c3)

Uz >0,Us >0,
B3U; <0

Picture 3.1(c4)

Wy <0 or
Wy =0&
W3 <0

BsU; >0,U3 <0

Picture 3.1(21)

B3U, <0,U2 <0

Picture 3.1(52)

B3U; >0,Uz >0

Picture 3.](53)_

B3ilU; <0,U3 >0

Picture 3.1(34)




Definition 1.1. A polynomial U(a,z,y) € Rla,z,y| is called a comitant with respect to (A, G),
where A is an affine invariant subset of polynomial systems (PS) and G is a subgroup of Aff (2,R),
if there exists x € Z such that for every (g, a) € G x R} the following identity holds in R[z,y]:

Ulrg(a), g(z,y)) = (det g)*Ula,z,y),

where det g = det M. If the polynomial U does not explicitly depend on x and y then it is called
invariant. The number x € Z is called the weight of the comitant Ul(a,x,y). If G = GL(2,R)
(or G =Aff(2,R)) and A = PS then the comitant U(a, x,y) is called G L-comitant (respectively,
affine comitant).

Definition 1.2. A subset X C R™ will be called G-invariant, if for every g € G we have
rqe(X) C X.

Let T'(2,R) be the subgroup of Aff(2,R) formed by translations. Consider the linear repre-
sentation of T'(2,R) into its corresponding subgroup 7 C GL(m,R), i.e. for every 7 € T(2,R),
T: x=2T+a,y =79+ [ we consider as above r, : R™ — R™,

Definition 1.3. A comitant U(a, z,y) with respect to (A, G) is called a T-comitant if for every
(1,a) € T(2,R) x R} the identity U(r; - a, %, ) = Ula, &, §) holds in Rz, 7).

Definition 1.4. The polynomial U(a,x,y) € Rla, z,y| has well determined sign on V C R™ with
respect to x, y if for every fivred a € V', the polynomial function U(a,x,y) is not identically zero
on V' and has constant sign outside its set of zeroes on V.

Observation 1.3. We draw attention to the fact, that if a T-comitant U(a,z,y) with respect to
(A, G) of even weight is a binary form in x, y, of even degree in the coefficients of the systems and
has well determined sign on the affine invariant algebraic subset R’} then this property is conserved
by any affine transformation and the sign is conserved.

Let us consider the polynomials

Ci(a>Iay) = ypi(a,l',y) - Iqi(a>zay) € ]R[a,a?,y], 1= Oa ]-72a

Di(a,x,y) = (%p,-(a,:z,y) + %qi(a,:z,y) € Rla,z,y|, i=1,2. (1.30)
As it was shown in [1] the polynomials
{ Cola,z,y), Ci(a,z,y), Cs(a,z,y), Di(a), Ds(a,x,y) } (1.31)
of degree one in the coefficients of quadratic systems are GG L-comitants of these systems.
Notation 1.4. Let f, g € Rla,z,y] and
k
(f, 9)(k) = h—o(_l)h (;{;) 8xl?_khf&yh axf?;ygk—h' (1.32)

(f,9)® € Rla,z,y] is called the transvectant of index k of (f,g).

Theorem 1.1. Any G L-comitant of quadratic systems can be constructed from the elements of

the set (1.31) by using the operations: +, —, x, and by applying the differential operation (x,)*).

Remark 1.5. We point out that the elements of the set (1.31) generate the whole set of GL-
comitants and hence also the set of affine comitants as well as of set of T-comitants.



