
Definition of chaos
Abstract results

R. May’s model of predator prey type
Applications

Definition of chaotic dynamics

Chaos in delay differential equations with
applications in population dynamics

A. Ruiz-Herrera
University of Granada

This research is supported by a grant FPU 2009 and
the research project MTM 2011-23652

A. Ruiz-Herrera Chaos in delay differential equations with applications in population dynamics



Definition of chaos
Abstract results

R. May’s model of predator prey type
Applications

Definition of chaotic dynamics

“ A chaotic phenomenon occurs if it is possible to

reproduce, within the system and varying the initial

conditions, all the possible outcomes of a coin-fliping

experiment”

S. Smale, Finding horseshoe on the beaches of Rio, Math. Intelligencer
20 (1998), 39–44
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Definition of chaos

Definition

Let (X , d) be a metric space. A continuous map ψ : X → X has chaotic
dynamics on two symbols if ∃ disjoint compact sets K0,K1 ⊂ X with
this property:

∀ (si )i∈Z ∈ {0, 1}Z, ∃ (ωi )i∈Z ∈ (K0 ∪ K1)Z s.t.

ωi ∈ Ksi and ωi+1 = ψ(ωi ) for all i ∈ Z. (1)

Moreover, if the sequence (si )i∈Z ∈ {0, 1}Z is periodic then we can also
find a periodic sequence (ωi )i∈Z ∈ (K0 ∪ K1)Z satisfying (1).
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EXAMPLE

Take ψ : RN −→ RN a map with chaotic dynamics.

For the sequence s = (..., 1, 0, 1, 1, 0, 1, 1, 1, 0...)

we find a sequence
ω = (ωi )i∈Z ∈ (K0 ∪ K1)Z: ω0 ∈ K1 ,ω1 = ψ(ω0) ∈ K0 ,
ω2 = ψ2(ω0) ∈ K1 , ω3 = ψ3(ω0) ∈ K1, ω4 = ψ4(ω0) ∈ K0 and so on.
For the sequence s̃ = (..., 1, 0, 1, 0, 1, 0, 1, ...) we find a sequence
ω̃ = (ω̃i )i∈Z ∈ (K0 ∪ K1)Z : ω̃0 ∈ K1 , ω̃1 = ψ(ω̃0) ∈ K0,
ω̃2 = ψ2(ω̃0) ∈ K1 , ω̃3 = ψ3(ω̃0) ∈ K0...
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This definition of chaos has been used by several authors, e.g
Zgliczynski, Kirchgraber, Smale, Srzednicki, Mischaikow...Namely,
our definition of chaos is the classical definition of chaos in the sense
of coin tossing with the additional property of periodic points.

If our map is chaotic according to our definition is also chaotic in
the sense of Li-Yorke and in the sense of Block-Coppel.

Our definition guarantees natural properties of complex dynamics
such as sensitive dependence on the initial conditions.
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Abstract results

Definition

Given a set A ⊂ R2 and a positive constant m,

XA,m := {(x , y) ∈ R× C([−τ, 0],R) :

(x , y(0)) ∈ A, |y(t)− y(0)| ≤ m for all t ∈ [−τ, 0]}.

C([−τ, 0],R) (the continuous functions defined on [−τ, 0] and taking
values on R) The norm ‖(x , y)‖∞ := max{|x |, ‖y‖∞}.

Example: Take τ = π and A = [0, 1]× [0, 1]
( 1

2 , sin(t)) ∈ XA,1 but ( 1
2 , sin(t)) 6∈ XA,1/3.

( 3
2 , sin(t)) 6∈ XA,1.
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Abstract results

Consider P : D ⊂ R× C([−τ, 0],R) −→ R× C([−τ, 0],R) a compact
operator, a rectangle A = [a, b]× [c , d ] ⊂ R2, a constant m > 0 and a
closed set H ⊂ XA,m.

Definition

We say that (H,P) stretches XA,m along the paths and write

(H,P) : XA,m m−→XA,m,

if ∀ w : [0, 1] −→ XA,m continuous with w(0) ∈ {(x , y) ∈ XA,m : x = a}
and w(1) ∈ {(x , y) ∈ XA,m : x = b}, there exists a subinterval
[t ′, t ′′] ⊂ [0, 1] satisfying that

w(t) ∈ H, P(w(t)) ∈ XA,m for all t ∈ [t ′, t ′′],

P(w(t ′)) ∈ {(x , y) ∈ XA,m : x = a} and
P(w(t ′′)) ∈ {(x , y) ∈ XA,m : x = b} or viceversa.
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Abstract results

Consider
Pro : R× C([−τ, 0],R) −→ R2

(x , y(t)) 7→ (x , y(0)).

We say that (H,P) stretches XA,m along the paths if the following
condition holds:
For all w : [0, 1] −→ XA,m continuous so that Pro ◦ w is a path in
A = [a, b]× [c , d ] joining a× [c , d ] and b × [c , d ]
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We say that (H,P) stretches XA,m along the paths if the following
condition holds:
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Abstract results

w([t ′, t ′′]) ⊂ H,
Pro ◦ P ◦ w([t ′, t ′′]) is a path in A joining {a} × [c , d ] and
{b} × [c , d ].
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Abstract results

Theorem

Assume that there exist two disjoint compact sets K0,K1 ⊂ A, a
constant m, and a compact operator P such that

(XK0,m,P) : XA,m m−→XA,m,

(XK1,m,P) : XA,m m−→XA,m.

Then P induces chaotic dynamics on two symbols relative to
P(XA,m) ∩ XK1,m and P(XA,m) ∩ XK0,m.
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R. May’s model of predator prey type

We use our method to prove the presence of chaotic dynamics in the
classical model of predator prey with delay suggested by R. May in

Time-delay versus stability in population models with two and three
trophic levels, Ecology, 1973.
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R. May’s model of predator prey type

Consider the system{
x ′(t) = x(t)(−a(t)− b(t)x(t) + c(t)y(t))
y ′(t) = y(t)(d(t)− e(t)x(t)− f (t)y(t − τ))

(2)

where τ > 0 and all the coefficients are positive and T -periodic.

This system is used to model the evolution of a herbivorous population
(y) and a carnivorous population (x).

b(t) competition inside the species x .
c(t) effect of the prey in the species x .
f (t) competition inside the species y .
e(t) effect of the predator in the species y .
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R. May’s model of predator prey type

Why is the delay introduced in the the previous model?

The competition for the food inside the herbivore at time t must depend
on y(t − τ) where τ is the growing time for the grass (food for the
herbivore).
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R. May’s model of predator prey type

Forget the carnivorous population,

y ′(t) = y(t) (d(t)− f (t)y(t − τ))︸ ︷︷ ︸
GROWTH RATE

(3)

SITUATION 1: BEFORE HUGE number of animals at time t 4
animals.
SITUATION 2: BEFORE SMALL number of animals at time t 10
animals.

If we don’t introduce delay, the situation 1 is much better for surviving
than the situation 2 because the Growth rate is larger.
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Applications

We want to prove analytically the presence of chaos in{
x ′(t) = x(t)(−a(t)− b(t)x(t) + c(t)y(t))
y ′(t) = y(t)(d(t)− e(t)x(t)− f (t)y(t − τ))

(4)

Two remarks:

For some parameters, our system is not chaotic. See

A. R.-H, Topological criteria of global attraction with applications in
population dynamics, Nonlinearity 25 (2012), 2823–2841.

Notice that the Poincaré operator for this system is

P : D ⊂ R× C([−τ, 0],R) −→ R× C([−τ, 0],R)

z = (ξ, η) 7→ (x(T ; z), yT (z))

with yT (z)(t) := y(T + t; z),
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Assume that the coefficients in the previous system are piece-wise
constant in this way (T1 + T2 = T ) (all the parameters are strictly
positive){

x ′(t) = x(t)(−a1 + c1y(t))
y ′(t) = y(t)(d1 − e1x(t)) for t ∈ [nT , nT + T1[

(5)

{
x ′(t) = x(t)(−a2 − b2x(t) + c2y(t))
y ′(t) = y(t)(d2 − f2y(t − τ)) for t ∈ [nT + T1, nT + T1 + T2[

(6)
Denote by (S) this T -periodic system.
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Applications

Theorem

Consider system (S) with all parameters fixed except d1,T1,T2, τ and
suppose that

3d2

4f2
<

a2

c2
<

5d2

4f2
.

(7)

Then there exist a constant T ∗2 and three maps d∗1 (T̃2), T ∗1 (d̃1, T̃2), and

τ∗(d̃1, T̃1, T̃2) with the following property:if 0 < T2 < T ∗2 , d1 > d∗1 (T2),
T1 > T ∗1 (d1,T2), and 0 < τ < τ∗(d1,T1,T2) then the Poincaré operator
associated to (S) with parameters T2, d1, T1 and τ is chaotic.

In concrete examples we can give precise estimates of T ∗2 , d∗1 (T2),
T ∗1 (d1,T2) and τ∗(d1,T1,T2) depending on the coefficients of the
system.
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Now we study the presence of chaos in this system when the coefficients
are not necessarily piece-wise constant.{

x ′(t) = x(t)(−a(t)− b(t)x(t) + c(t)y(t))
y ′(t) = y(t)(d(t)− e(t)x(t)− f (t)y(t − τ))

(8)
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Theorem

Fix all parameters in (S) satisfying the conditions of the previous
theorem, i.e. (7) and 0 < T2 < T ∗2 , d1 > d∗1 (T2), T1 > T ∗1 (d1,T2) and
0 < τ < τ∗(d1,T1,T2). Then there exists ε > 0 such that if the distance
in L1

T between the previous parameters in (S) and the coefficients of (8)
is smaller than ε, the Poincaré map associated to (8) is chaotic.

Given two T -periodic integrable functions f (t) and g(t), their distance in

L1
T is given by

∫ T

0
|f (t)− g(t)| dt. In our setting, the assumptions mean

that ∫ T1

0

|a(t)− a1|dt +

∫ T

T1

|a(t)− a2|dt < ε,

and so on (for the other coefficients).

A. Ruiz-Herrera Chaos in delay differential equations with applications in population dynamics



Definition of chaos
Abstract results

R. May’s model of predator prey type
Applications

Applications

Theorem

Fix all parameters in (S) satisfying the conditions of the previous
theorem, i.e. (7) and 0 < T2 < T ∗2 , d1 > d∗1 (T2), T1 > T ∗1 (d1,T2) and
0 < τ < τ∗(d1,T1,T2). Then there exists ε > 0 such that if the distance
in L1

T between the previous parameters in (S) and the coefficients of (8)
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THANK YOU VERY MUCH!
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