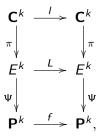
Classification of Lattès maps on \mathbf{P}^2

Feng Rong

Department of Mathematics Shanghai Jiao Tong University Shanghai, P.R. China

New Trends in Dynamical Systems Salou (Tarragona), Spain; Oct. 1, 2012 A Lattès map on \mathbf{P}^k is, by definition, a holomorphic map f on \mathbf{P}^k such that the following diagram commutes:



where E^k is a complex torus of dimension k, l is an affine map on \mathbf{C}^k which induces an affine map L on E^k , and Ψ is a holomorphic map from E^k onto \mathbf{P}^k .

Main Theorem

Let g be a holomorphic map on \mathbf{P}^1 and f be a holomorphic map on \mathbf{P}^2 . If there exists a holomorphic map $\pi : \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^2$ such that $f \circ \pi = \pi \circ (g, g)$, then we call f the square map of g.

Main Theorem

Let g be a holomorphic map on \mathbf{P}^1 and f be a holomorphic map on \mathbf{P}^2 . If there exists a holomorphic map $\pi : \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^2$ such that $f \circ \pi = \pi \circ (g, g)$, then we call f the square map of g.

An algebraic web is given by a reduced curve $C \subset \check{\mathbf{P}}^2$, where $\check{\mathbf{P}}^2$ is the dual projective plane consisting of lines in \mathbf{P}^2 . The web is invariant for a holomorphic map f on \mathbf{P}^2 if every line in \mathbf{P}^2 belonging to C is mapped to another such line.

Main Theorem

Let g be a holomorphic map on \mathbf{P}^1 and f be a holomorphic map on \mathbf{P}^2 . If there exists a holomorphic map $\pi : \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^2$ such that $f \circ \pi = \pi \circ (g, g)$, then we call f the square map of g.

An algebraic web is given by a reduced curve $C \subset \check{\mathbf{P}}^2$, where $\check{\mathbf{P}}^2$ is the dual projective plane consisting of lines in \mathbf{P}^2 . The web is invariant for a holomorphic map f on \mathbf{P}^2 if every line in \mathbf{P}^2 belonging to C is mapped to another such line.

Theorem (Main Theorem)

If f is a Lattès map on \mathbf{P}^2 , then either f or a suitable iteration of f is one of the following:

(i) a square map of a Lattès map on \mathbf{P}^1 ;

(ii) a holomorphic map preserving an algebraic web associated to a smooth cubic.

Complex crystallographic group

Let E(n) be the complex motion group acting on \mathbb{C}^n . A complex crystallographic group is, by definition, a discrete subgroup of E(n) with compact quotient. Let U(n) be the unitary group of size n.

Complex crystallographic group

Let E(n) be the complex motion group acting on \mathbb{C}^n . A complex crystallographic group is, by definition, a discrete subgroup of E(n) with compact quotient. Let U(n) be the unitary group of size n.

For $A \in U(2)$ and $r \in \mathbb{C}^2$, let $(A|r) \in E(2)$ denote the transformation: $z \to Az + r$. For a two dimensional complex crystallographic group Γ , $R := \{r; (1|r) \in \Gamma\}$ and $G := \{A; (A|r) \in \Gamma\}$ are called the lattice and the point group of Γ , respectively. If Γ has the representation $\{(A|r); A \in G, r \in R\}$, then Γ is called the semidirect product $G \ltimes R$ of the lattice and the point group.

• • = • • = •

Complex crystallographic group

Let E(n) be the complex motion group acting on \mathbb{C}^n . A complex crystallographic group is, by definition, a discrete subgroup of E(n) with compact quotient. Let U(n) be the unitary group of size n.

For $A \in U(2)$ and $r \in \mathbb{C}^2$, let $(A|r) \in E(2)$ denote the transformation: $z \to Az + r$. For a two dimensional complex crystallographic group Γ , $R := \{r; (1|r) \in \Gamma\}$ and $G := \{A; (A|r) \in \Gamma\}$ are called the lattice and the point group of Γ , respectively. If Γ has the representation $\{(A|r); A \in G, r \in R\}$, then Γ is called the semidirect product $G \ltimes R$ of the lattice and the point group.

Let $G(m, p, 2) \subset U(2)$ denote the group generated by

$$\left(egin{array}{c} 1 \ 1 \end{array}
ight), \ \left(egin{array}{c} heta \ heta \end{array}
ight) ext{ and } \left(egin{array}{c} heta^p \ heta \end{array}
ight), \ \ heta = extbf{e}^{2\pi i/m}.$$

• • = • • = •

٨

Theorem (Corollary of a theorem of Kaneko-Tokunaga-Yoshida)

If (Λ, G) is a pair such that $E^2 = \mathbf{C}^2 / \Lambda$ and $E^2 / G \cong \mathbf{P}^2$, then, up to conjugation, it is one of the following

$$\begin{split} \Lambda &= L^{2}(\tau), \qquad G = G_{1} := G(2, 1, 2), \\ \Lambda &= L^{2}(\zeta), \qquad G = G_{2} := G(3, 1, 2), \\ \Lambda &= L^{2}(i), \qquad G = G_{3} := G(4, 1, 2), \\ \Lambda &= L^{2}(\zeta), \qquad G = G_{4} := G(6, 1, 2), \\ \Lambda &= L^{2}(i), \qquad G = G_{5} := G(4, 2, 2) \ltimes \mathbf{Z} \frac{1+i}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \\ = \Lambda_{6} := L(\tau) \begin{pmatrix} -1 \\ 1 \end{pmatrix} + L(\tau) \begin{pmatrix} \zeta^{2} \\ \zeta \end{pmatrix}, \qquad G = G_{6} := G(3, 3, 2). \end{split}$$

Affine maps

Write L = (A|r), where

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right), \quad r = \left(\begin{array}{c} e \\ f \end{array} \right),$$

with $a, b, c, d, e, f \in \mathbf{C}$. Set $\psi = \Psi \circ \pi$.

聞 と く き と く き と

э

Affine maps

Write L = (A|r), where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $r = \begin{pmatrix} e \\ f \end{pmatrix}$,

with $a, b, c, d, e, f \in \mathbf{C}$. Set $\psi = \Psi \circ \pi$.

For $z \in \mathbf{C}^2$ and $\lambda \in \Lambda$ we then have

$$\psi \circ (Az + r) = f \circ \psi(z) = f \circ \psi(z + \lambda) = \psi \circ (A(z + \lambda) + r).$$

This shows that

 $A\Lambda \subset \Lambda$.

Affine maps

Write L = (A|r), where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad r = \begin{pmatrix} e \\ f \end{pmatrix},$ with a b a d a f $\in \mathbf{C}$. Set $v_{f} = V_{f} = \mathbf{c}$

with $a, b, c, d, e, f \in \mathbf{C}$. Set $\psi = \Psi \circ \pi$.

For $z \in \mathbf{C}^2$ and $\lambda \in \Lambda$ we then have

$$\psi \circ (Az + r) = f \circ \psi(z) = f \circ \psi(z + \lambda) = \psi \circ (A(z + \lambda) + r).$$

This shows that

$A\Lambda \subset \Lambda$.

Since *L* carries a small domain of volume *V* to a domain of volume $|\det A|^2 V$, it follows that the map *L* has degree $|\det A|^2$. Let d_f be the algebraic degree of *f* and the (topological) degree of *f* is d_f^2 . Since $f \circ \Psi = \Psi \circ L$, we get $d_f^2 = |\det A|^2$, and thus

 $|\det A| = d_f.$

Admissible affine maps

By definition, an affine map L on $E^2 = \mathbf{C}^2 / \Lambda$ induces a Lattès map f on $\mathbf{P}^2 \cong E^2 / G$ if and only if

(*) for any $g \in G$, there exists $h \in G$ s.t. $L \circ g \equiv h \circ L \mod \Lambda$.

Admissible affine maps

By definition, an affine map L on $E^2 = \mathbf{C}^2 / \Lambda$ induces a Lattès map f on $\mathbf{P}^2 \cong E^2 / G$ if and only if

 (\star) for any $g \in G$, there exists $h \in G$ s.t. $L \circ g \equiv h \circ L \mod \Lambda$.

For
$$L = (A|r)$$
, $g = (B|r')$ and $h = (C|r'')$, we have
 $L \circ g = (AB|Ar' + r)$ and $h \circ L = (CA|Cr + r'')$.

Therefore $L \circ g \equiv h \circ L \mod \Lambda$ is equivalent to

$$AB = CA$$
 and $Ar' + r \equiv Cr + r'' \mod \Lambda$.

For the proof of the Main Theorem, we make use of the following two simple yet important observations:

1. condition (\star) is satisfied if and only if it is satisfied for all generators of *G*;

2. if g = (B|r') and h = (C|r'') satisfy $L \circ g \equiv h \circ L \mod \Lambda$, then *B* and *C* are of the same order.

Square maps

Lemma

Let L = (A|r) be an affine map on E^2 which induces a Lattès map on \mathbf{P}^2 in the case (Λ, G_i) , i = 1, 2, 3, 4, 5. If A is of the form

$$\left(\begin{array}{cc} \alpha & \\ & \beta \end{array}
ight)$$
 or $\left(\begin{array}{cc} & \alpha \\ & \beta \end{array}
ight)$,

then L induces a map on $\mathbf{P}^1 \times \mathbf{P}^1$ of the form (g,g), where g is a Lattès map on \mathbf{P}^1 .

Square maps

Lemma

Let L = (A|r) be an affine map on E^2 which induces a Lattès map on \mathbf{P}^2 in the case (Λ, G_i) , i = 1, 2, 3, 4, 5. If A is of the form

$$\left(\begin{array}{cc} \alpha & \\ & \beta \end{array}
ight)$$
 or $\left(\begin{array}{cc} & \alpha \\ & \beta \end{array}
ight)$,

then L induces a map on $\mathbf{P}^1 \times \mathbf{P}^1$ of the form (g, g), where g is a Lattès map on \mathbf{P}^1 .

By the above lemma, we have the following commutative diagram

$$\begin{array}{cccc} E^2 & \xrightarrow{\pi_1} & \mathbf{P}^1 \times \mathbf{P}^1 & \xrightarrow{\pi_2} & \mathbf{P}^2 \\ \downarrow & & & & & \\ \downarrow & & & & & \\ E^2 & \xrightarrow{\pi_1} & \mathbf{P}^1 \times \mathbf{P}^1 & \xrightarrow{\pi_2} & \mathbf{P}^2 \end{array}$$

Maps preserving an algebraic web

Let g be a holomorphic map on \mathbf{P}^1 . Let C be a smooth conic in \mathbf{P}^2 , which we identify with \mathbf{P}^1 . For a point $P \in \mathbf{P}^2$, let l_1 and l_2 be the tangent lines to C which pass through P and let Q_1 and Q_2 be the points of contact. Let l'_1 and l'_2 be the tangent lines to C at $g(Q_1)$ and $g(Q_2)$ and define f(P) to be the intersection point of l'_1 and l'_2 . It is easy to see that f preserves the algebraic web associated to the dual curve of C.

Maps preserving an algebraic web

Let g be a holomorphic map on \mathbf{P}^1 . Let C be a smooth conic in \mathbf{P}^2 , which we identify with \mathbf{P}^1 . For a point $P \in \mathbf{P}^2$, let l_1 and l_2 be the tangent lines to C which pass through P and let Q_1 and Q_2 be the points of contact. Let l'_1 and l'_2 be the tangent lines to C at $g(Q_1)$ and $g(Q_2)$ and define f(P) to be the intersection point of l'_1 and l'_2 . It is easy to see that f preserves the algebraic web associated to the dual curve of C.

If L = (A|r) induces a Lattès map in the case (Λ, G_6) then we have that either L, L^2, L^3 or L^6 is of the form (I, I), where $I: x \to ax + e$, with $3e \equiv 0 \mod L(\tau)$, is an affine map on E. Let $\eta: E \to \check{\mathbf{P}}^2$ be an embedding of E into $\check{\mathbf{P}}^2$ and denote the image by C, which is a smooth cubic. Since $3e \equiv 0 \mod L(\tau)$, the map I preserves collinearity. Thus (I, I) induces a holomorphic map on \mathbf{P}^2 , through $\phi: E \times E \to \mathbf{P}^2$, which preserves the algebraic web associated to C. Here ϕ maps $(x, y) \in E \times E$ to the line joining $\eta(x)$ and $\eta(y)$.

Associated Orbifold

Let X be a complex manifold and denote by $\mathcal{H}(X)$ the space of irreducible analytic subvarieties of codimension 1 in X. Let r be a function defined on $\mathcal{H}(X)$ with values in \mathbf{N}^+ , which is equal to 1 outside a locally finite family of analytic subvarieties of X. We call the pair (X, r) an orbifold. We say that the orbifold (X, r) is parabolic, if there exists a ramified covering $f : X \to X$ such that

 $r(f(H)) = m_f(H) \cdot r(H)$

for every $H \in \mathcal{H}(X)$, where $m_f(H)$ is the multiplicity of f along H (i.e. the multiplicity of f at a generic point of H). (Note that $m_f(H) = 1$ if $H \not\subset C_{f.}$)

Associated Orbifold

Let X be a complex manifold and denote by $\mathcal{H}(X)$ the space of irreducible analytic subvarieties of codimension 1 in X. Let r be a function defined on $\mathcal{H}(X)$ with values in \mathbf{N}^+ , which is equal to 1 outside a locally finite family of analytic subvarieties of X. We call the pair (X, r) an orbifold. We say that the orbifold (X, r) is parabolic, if there exists a ramified covering $f : X \to X$ such that

 $r(f(H)) = m_f(H) \cdot r(H)$

for every $H \in \mathcal{H}(X)$, where $m_f(H)$ is the multiplicity of f along H (i.e. the multiplicity of f at a generic point of H). (Note that $m_f(H) = 1$ if $H \not\subset C_{f.}$)

Lemma

If f is a Lattès map on \mathbf{P}^k , then there exists a parabolic orbifold (\mathbf{P}^k, r) associated with f.

An example

The following is an example in the case $(L^2(i), G(2, 1, 2))$.

The affine map is given by L = (A|r), where

$$A = \left(egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight), r \equiv e \left(egin{array}{cc} 1 \ 1 \end{array}
ight) \mod L^2(i), \hspace{0.2cm} e \equiv -e \mod L(i).$$

To obtain f, we need to express $\wp(u+v) + \wp(u-v)$ and $\wp(u+v)\wp(u-v)$ in terms of $\wp(u) + \wp(v)$ and $\wp(u)\wp(v)$. Here \wp is the Weierstrass \wp -function associated to L(i). From

$$\wp(u+v)+\wp(u-v)=\frac{2(\wp(u)\wp(v)-1)(\wp(u)+\wp(v))}{(\wp(u)-\wp(v))^2},$$

and

$$\wp(u+v)\wp(u-v)=\frac{(\wp(u)\wp(v)+1)^2}{(\wp(u)-\wp(v))^2},$$

we get

$$f:[x:y:z] \longrightarrow [2x(y-z):(y+z)^2:x^2-4yz].$$

Thank You! [&] Happy Birthday, Jaume!

Feng Rong Classification of Lattès maps on P²

∃ → < ∃</p>