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Introduction

The main objective of classical Celestial Mechanics is the study of
the N−body problem, which consists of describing the motion of N
point masses moving in the Euclidian 3−dimensional space under the
action of their mutual newtonian gravitational forces. The formula-
tion of the N−body problem appears at first time in this treatise
Philosophiae Naturalis Principia Mathematica of Newton (1687). It is
in this treatise where the laws of mechanics and the universal gravita-
tional attraction law allowed to formulate the N−body problem as a
system of differential equations.

The main goal of this paper is to present new families of periodic
solutions for spatial restricted (N +1)–body problems. We distinguish
one of the masses that is far way from the others. This mass is called
comet and the others primaries . We pointed that the comet has
infinitesimal mass and a small parameter ε is considered as a parameter
scale related with the ratio between the distance of two primaries and
the distance of one primary and the comet.

We assume that all the primaries have the same mass m. They are in
a planar central configuration given by the vertices of an N−regular
polygon inscribed on the unit circle rotating around the center of mass
with angular velocity ω. We obtain the existence of a new family of
doubly–symmetric periodic solutions for the motion of the infinitesi-
mal body by using the Poincaré’s continuation method. This periodic
solution is a perturbation of the circular solution of the Kepler problem.

1. Modeling

First we consider that N primaries with equal mass m are in a central
configuration at the vertices of an N–regular polygon. Then we deal
with the problem of N + 1 bodies moving in the space R3 such that
the only forces acting on them are the ones coming from their mutual
gravitational attractions.

Assume that the comet is very far from the other N primaries. More-
over the primaries are in a planar central configuration that satisfies:
the N primaries have the same mass m, and the kth particle is located
at the vertex ρk = (cos θk, sin θk, 0), θk = 2πk/N and k = 1, . . . , N ,
of a N–regular polygon inscribed on the unit circle (see Figure 1 and
[4]).

Note that the origin of the system of inertial coordinates is at the
center of mass. The primaries are rotating around the center of mass
with angular velocity ω and their motion is given byXk(t)
Yk(t)
0

 =

 cosωt − sinωt 0
sinωt cosωt 0
0 0 1

 cos θk
sin θk
0

 =

 cos(θk + ωt)
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Figure 1: The primaries with mass m in an N−regular polygon
inscribed on the unit circle

We consider (X, Y, Z) the coordinates of the infinitesimal mass and
(Xk, Yk, 0) the coordinates of the kth primary in the inertial coordi-
nates. We want to study the motion of the infinitesimal mass. Thus
the equations of motion for the infinitesimal mass in inertial coordi-
nates are

Ẍ = −
N∑
k=1

m(X − cos(θk + ωt))

((X − cos(θk + ωt))2 + (Y − sin(θk + ωt))2 + Z2)3/2
,

Ÿ = −
N∑
k=1

m(Y − sin(θk + ωt))

((X − cos(θk + ωt))2 + (Y − sin(θk + ωt))2 + Z2)3/2
,(1)

Z̈ = −
N∑
k=1

mZ

((X − cos(θk + ωt))2 + (Y − sin(θk + ωt))2 + Z2)3/2
.

Considering a rotating coordinate system and a special change of co-
ordinates we have that the motion of the infinitesimal mass of this
restricted N + 1–body problem can be written as a Hamiltonian sys-
tem

ẋ1 = y1 − x2,

ẋ2 = y2 + x1,

ẋ3 = y3,

ẏ1 = −y2 −
N∑
k=1

m
x1 − cos θk

((x1 − cos θk)
2 + (x2 − sin θk)

2 + x23)
3/2
,

ẏ2 = y1 −
N∑
k=1

m
x2 − sin θk

((x1 − cos θk)
2 + (x2 − sin θk)

2 + x23)
3/2
,

ẏ3 = −
N∑
k=1

m
x3

((x1 − cos θk)
2 + (x2 − sin θk)

2 + x23)
3/2
,

(2)

with Hamiltonian function

H1 =
‖y‖2

2
−xTKy−

N∑
k=1

m

((x1 − cos θk)
2 + (x2 − sin θk)

2 + x23)
1/2
,

(3)
where x = (x1, x2, x3), y = (y1, y2, y3) are the conjugate coordinates

of x, and K =

 0 1 0
−1 0 0
0 0 0

.

As we consider the case that the infinitesimal mass is far from the
primaries we take the scale of variables: x → ε−2x, y → εy, that
means to replace x by ε−2x and y by εy in the Hamiltonian (3). This
is a symplectic transformation with multiplier ε, see for more details
[3]. Moreover, we consider the total mass Nm as the unit mass and
work with Poincaré variables. Then

H1=
−ε3

2(P1+P3)2
−P1+

1

2
(P 2

2+Q
2
2)+ε

5H∗1 (Q1, Q2, Q3, P1, P2, P3, ε,m),

and the equations of motion are

Q̇1 =
∂H1

∂P1
=

ε3

(P1 + P3)3
− 1 + ε5f1,

Q̇2 =
∂H1

∂P2
= P2 + ε5f2,

Q̇3 =
∂H1

∂P1
=

ε3

(P1 + P3)3
+ ε5f3,

Ṗ1 = −
∂H1

∂Q1
= 0 + ε5f4,

Ṗ2 = −
∂H1

∂Q2
= −Q2 + ε5f5,

Ṗ3 = −
∂H1

∂Q3
= 0 + ε5f6,

(4)

where fi is the appropriate partial derivative of H∗1 for i = 1, . . . , 6.

2. Comet doubly-symmetric
periodic orbits

By the symmetry of an N–regular polygon we have that the system
(2) is invariant under the two anti–symplectic involutions:

R1 : (t, x1, x2, x3, y1, y2, y3)→ (−t, x1,−x2,−x3,−y1, y2, y3),
R2 : (t, x1, x2, x3, y1, y2, y3)→ (−t, x1,−x2, x3,−y1, y2,−y3).

The fixed sets by the involutions R1 and R2 are L1 =
{(x1, 0, 0, 0, y2, y3)} and L2 = {(x1, 0, x3, 0, y2, 0)}, respectively.
If a solution starts in one of these sets at time t = 0 and hits the other
set at later time t = T , then the solution is 4T–periodic and the orbit
of this solution is invariant by both symmetries. We shall call such a
periodic solution doubly–symmetric. Geometrically an orbit intersects
L1 if it hits the x1–axis perpendicularly and it intersects L2 if it hits
the (x1, x3)–plane perpendicularly.

In Poincaré variables we obtain a circular orbit when Q2 = P2 = 0.
The set L1 in Poincaré variables is defined by Q2 = 0, Q1 ≡ Q3 ≡
0 (mod π), and L2 in Poincaré variables is defined by Q2 = 0, Q1 ≡
0 (mod π), Q3 ≡ π/2 (mod π).

Note that with the scaled variables when the parameter ε tends to zero
the distance between the infinitesimal mass and the primaries goes to
infinity. So the differential equations (4) degenerate. Then we need to
obtain a solution in a neighborhood of ε = 0, and to do this we need
the approximate solutions to this system of differential equations and
good estimates. Moreover, since we are looking for periodic solutions
far from the primaries and therefore of long period, we need these
approximate solutions for large values of t and small values of ε.

In the first approximation we ignore the ε5 terms of equations (4), and
we get

Q̇1 =
ε3

(P1 + P3)3
− 1, Ṗ1 = 0,

Q̇2 = P2, Ṗ2 = −Q2,

Q̇3 =
ε3

(P1 + P3)3
, Ṗ3 = 0.

(5)

These are the equations of motion for the Kepler problem in the scaled,
rotating Poincaré variables around the center mass of the primaries.

After study in which conditions a solution of (5) in t = 0 hits L1 and
in t = T hits L2 we conclude that solution

Q1(t) =

(
ε3

(p1 + p3)3
− 1

)
t + iπ, P1(t) = p1,

Q2(t) = 0, P2(t) = 0,

Q3(t) =

(
ε3

(p1 + p3)3

)
t + jπ, P3(t) = p3,

with p3 arbitrário, k = −(m + 1/2)

ε3
+m+1

2, p1 given by (p1+p3)
3 = 1

is a dobly–symmetric 4T–periodic solution and T = (m− k + 1/2)π.

We shall show that the solution of the approximate equations (5) are
actually approximations of doubly–symmetric periodic solutions of the
true equations (4). Thus we obtain our main result is the following
one.

3. Main Result

Theorem 1. There exist doubly–symmetric periodic solutions of the
spatial restricted (N + 1)–body problem for the primaries with equal
mass m at the vertex of an N−regular polygon inscribed on the unit
circle.

The next lemma is used to conclude Theorem 1.

Lemma 2. Let (q1, q2, q3, p1, p2, p3) be initial conditions such that
for the equations of the first approximation (5) the solutions re-
main bounded and bounded away from singularities. Let φ(t) =
(φ1(t), φ2(t), φ3(t), φ4(t), φ5(t), φ6(t)) be a solution of (4) satisfy-
ing (φ1(0), φ2(0), φ3(0), φ4(0), φ5(0), φ6(0)) = (q1, q2, q3, p1, p2, p3).
Then this solution is of the form

φ1(t) =
(
ε3/(p1 + p3)

3 − 1
)
t + q1 + ε2g1,

φ2(t) = q2 cos(t) + p2 sin(t) + ε2g2,

φ3(t) =
(
ε3/(p1 + p3)

3
)
t + q3 + ε2g3,

φ4(t) = p1 + ε2g4,

φ5(t) = −q2 sin(t) + p2 cos(t) + ε2g5,

φ6(t) = p3 + ε2g6,

(6)

for 0 ≤ t ≤ γε−3, where γ is a constant independent of ε, and
where the gi = gi(t, q1, q2, q3, p1, p2, p3, ε) are uniformly bounded in
t ∈ [0, γε−3] as ε approaches zero.

A solution φ(t) of Lemma 2 that in t = 0 hits L1 and in t = T hits
L2 (i.e. a doubly–periodic solution) must satisfy the conditions: in
t = 0 given by Q1 = iπ, Q2 = 0, Q3 = jπ; and in t = T given by
Q1 = (i + k)π, Q2 = 0, Q3 = (j +m + 1/2)π.

By Arenstorf´s Implicit Function Theorem [1] we conclude that for
ε ∈ W = {ε ∈ B \ {0} : ε3 = 1/n, for n ∈ Z∗} and p3 arbitrary we

can find functions T (p1(ε), p3, ε) = T̃ (p3, ε)
∼=
(
m0 +

1

2
+
2m0

ε3

)
π,

p2(p3, ε)
∼= 0, and p1(ε) such that (p1 + p3)

3 ∼= 4m0/(2m0 + 1) and(
ε3

p1(ε) + p3
− 1

)
T̃ (p3, ε)−

2m0π

ε3
+ ε2g1 = 0,

p2(p3, ε) sin(T̃ (p3, ε)) + ε2g2 = 0,(
ε3

p1(ε) + p3

)
T̃ (p3, ε)−

(
m0 +

1

2

)
π + ε2g3 = 0.

Then for each ε ∈ W , since for ε3 = 1/n we have 2m0π/ε
3 = kπ for

k an integer, we obtain the necessary period and the initial conditions.

The results of this paper generalize the results of Howison and Meyer
[2] from N = 2 to any N ≥ 2.
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