
Hunting three limit cycles with only two linear foci
E. Freire, E. P. & F.  Torres (U. Sevilla)

Salou, October 1st-5th, 2012

Don’t worry! I prefer 
to hunt limit cycles!

This butterfly
is mine!

(On the occasion of Jaume Llibre’s 60th birthday)
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Summary

• We consider the family of planar discontinuous piecewise-linear systems 
with two linearity zones separated by a straight line. 

•  An example in this family has been recently reported to have three nested 
limit cycles, so breaking a natural conjecture on being two the maximum 
number of limit cycles.

• We exploit a Liénard-like canonical form that contains seven parameters, 
one of them characterizing the sliding set, which allows to pave the way for 
the systematic study of planar discontinuous piecewise-linear systems.

• The relevant case for the study is the focus-focus dynamics, where a 
reduced canonical form with only five parameters is useful. 

• We look for the parameter regions where can be proved the existence of 
three limit cycles surrounding the whole sliding set.
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The Huan-Yang example

S.-M. Huan and X.-S. Yang, On the number of limit cycles in general planar piecewise linear
systems, Discrete and Continuous Dynamical Systems-A 32 (2012) pp. 2147–2164.

Theorem (J. Llibre & E.P.) The above planar non–smooth piecewise linear

di↵erential system with two zones has 3 limit cycles surrounding its unique

equilibrium point located at the origin.

J. Llibre and E. P., Three Nested Limit Cycles In Discontinuous Piecewise Linear Di↵erential

Systems With Two Zones, Dynamics of Continuous, Discrete and Impulsive Systems-B 19 (2012)

pp. 325–335.

The planar non-smooth piecewise linear di↵erential system with two zones
separated by a straight line corresponding to Example 5.1 of Huan and Yang is
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It should be noticed that both linear vector fields, being homogeneous,

share the origin as their common equilibrium point.

D. C. Braga and L. F. Mello, Limit cycles in a family of discontinuous piecewise linear

di↵erential systems with two zones in the plane, Preprint (2012).

The three limit cycles as a result of a boundary equilibrium bifurcation

Thus, by considering the one-parameter family

ẋ =
⇢

A

�
x if x < ",

A

+
x if x � ",

the following result can be stated.

Theorem (D.C. Braga & L.F. Mello) The above one-parameter family
of piecewise linear systems with two zones has
(a) One unstable focus at the origin and no limit cycle when " < 0.
(b) One unstable focus at the origin and no limit cycle when " = 0.
(c) One stable focus at the origin and three limit cycles surrounding the
origin for each " > 0. One limit cycle is stable and the other two are
unstable.
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The three limit cycles can be obtained also as in...

C.A. Buzzi, C. Pessoa and J. Torregrosa,
Piecewise Linear Perturbations of a linear center,
Preprint, 2012.

E. Freire, E.P., J. Torregrosa and F. Torres,

The Hopf bifurcation at infinity in discontinuous planar piece-
wise linear systems, In preparation.
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Hunting the limit cycles one-by-one 

We will look for bifurcations leading to one limit cycle in the general 
family of piecewise linear systems with two zones.

The system can be written in the focus-focus canonical form proposed 
in Freire et al. (2012) for the case of one equilibrium in the left side.

E. Freire, E.P. and F. Torres, Canonical Discontinuous Planar Piecewise Linear Systems,
SIAM J. Applied Dynamical Systems 11 (2012) 181–211.

Example 5.1 of Huan & Yang is equivalent to
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⇢
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Planar PWL Filippov Systems
  (Utkin 1992, Kuznetsov et al. 2003) 

⌃ = {(x, y) 2 R2 : x = 0}
• We consider one discontinuity boundary defined by

• The boundary induces the partition of the phase 
plane into

S

+ = {(x, y) 2 R2 : x > 0}.

S

� = {(x, y) 2 R2 : x < 0},

The systems to be studied become

ẋ = F(x) =

(
F

+
(x) =

�
F+

1 (x), F+
2 (x)

�T
= A+

x + b

+, if x 2 S+,

F

�
(x) =

�
F�1 (x), F�2 (x)

�T
= A�x + b

�, if x 2 S�.
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Planar PWL Filippov Systems (cont’d) 

• As usual we define the    -subsets⌃

⌃s = {(0, y) : F+
1 (0, y)F�1 (0, y) 6 0} (sliding set)

⌃

c
= {(0, y) : F+

1 (0, y)F�1 (0, y) > 0} (crossing set)

ẋ = 0, ẏ = g(y) =
F

+
1 (x)F�2 (x)� F

�
1 (x)F+

2 (x)
F

+
1 (x)� F

�
1 (x)

, x 2 ⌃s
.

• We also compute the Filippov vector field
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Planar PWL Filippov Systems (cont’d) 

• Some other standard definitions follow:
Points (0, ȳ) 2 ⌃

s
with g(ȳ) = 0 act in some sense as equilibria of our system

and they are called pseudo-equilibria.

A double invisible tangency point with close orbits spiraling around it, is

called a pseudo-focus or fused focus.

A pseudo-equilibrium in the attractive part of the sliding set with g0(y) < 0

is a stable pseudo-node, being a pseudo-saddle if g0(y) > 0.

Similarly, a pseudo-equilibrium in the repulsive part with g0(y) > 0) is an

unstable pseudo-node, being again a pseudo-saddle if g0(y) < 0.

Note that at pseudo-equilibria (0, ȳ) which are neither boundary equilibrium

nor tangency points we have

F�
2 (0, ȳ)

F�
1 (0, ȳ)

=

F+
2 (0, ȳ)

F+
1 (0, ȳ)

,

and so the two vector fields F+
and F�

are anticollinear.
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ẏ

◆
=

✓
a

+
11x + a

+
12y + b

+
1

a

+
21x + a

+
22y + b

+
2

◆

⌃ = {(x, y) 2 R2 : x = 0}
✓

ẋ
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So many parameters only allow particular studies...

F. Giannakopoulos and K. Pliete, Closed trajectories in planar relay

feedback systems, Dynamical Systems, 17 (2002), 343–358

M. Han, W. Zhang, On Hopf Bifurcation in non-smooth Planar Systems,
J. Di↵erential Equations 248 (2010), 2399–2416.

J. Llibre, E. P. and F. Torres, On the existence and uniqueness of limit
cycles in Liénard di↵erential equations allowing discontinuities, Nonlinearity 21
(2008), 2121–2142.
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ẋ

ẏ
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We will assume a�12, a
+
12 6= 0 to avoid ‘wall’ cases.

Tangencies and sliding set

At tangency points, we speak of visible (invisible) tangency depending on

the sign of ẍ. Since ẍ|
x=0 = a11(a12y + b1) + a12(a21y + b2), we obtain

ẍ|
ẋ=0 = a12b2 � a21b1

We have a tangency point in ⌃ when ẋ|
x=0 = a12y + b1 vanishes.
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Tangencies and sliding set (cont’d)

Assuming a�12 < 0, there are two possibilities for a+
12:

(a+
12 < 0: bounded sliding)

(a+
12 > 0: bounded crossing)
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For a non-smooth system... a non-smooth change!

We do a continuous piecewise linear change of variables u = f(x), where

u = �a

+
12

✓
x

a

�
22x� a

�
12y

◆
+ a

+
12

✓
0

b

�
1

◆
, x < 0,

and

u = �a

�
12

✓
x

a

+
22x� a

+
12y

◆
+ a

+
12

✓
0

b

�
1

◆
, x > 0,

and afterwards rename the variable u to x.

This change is a global homeomorfism that conjugates the vector 
field in each halfplane, separately.  Such a conjugacy cannot be 
extended to the sliding vector field (but it works for our purpose)

M. Guardia, T.M. Seara, and M. A. Teixeira,

Generic bifurcations of low codimension of planar Filippov Systems,

Journal of Di↵erential Equations 250 (2011) 1967–2023.
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Liénard canonical form for DPWL systems. Assume that a+
12a

�
12 > 0

(bounded sliding set). Then the system can be written in the form,

ẋ =

✓
T� �1

D� 0

◆
x�

✓
0

a�

◆
if x 2 S�,

ẋ =

✓
T+ �1

D+
0

◆
x�

✓
�b
a+

◆
if x 2 S+,

where T ,D stand for trace and determinant, and

a� = a+
12(a

�
12b

�
2 � a�22b

�
1 ), a+

= a�12(a
+
22b

+
1 � a+

12b
+
2 ), b = a+

12b
�
1 � a�12b

+
1 .

This system has as its tangency points (0,0) and (0,b).  

Apart from the linear invariants, the other three parameters are associated to the 
x-coordinates of the equilibrium points (!⁺ and !⁻) and the size and stability of 
the sliding set (b).

The discontinuous canonical form
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• When !⁺=!⁻ and b =0, we get a continuous piecewise linear system even if the 
original system was discontinuous.

• In particular, homogeneous systems with bounded sliding set and b⁺ = b⁻ = 0, 
can always be transformed in a continuous system. Thus the class of bimodal 
systems considered in

False Filippov systems

E. Freire, E. P., F. Rodrigo and F.Torres, Bifurcation Sets of Con-

tinuous Piecewise Linear Systems with Two Zones, Int. J. Bifurcation and

Chaos 8 (1998), 2073–2097.

Y. Zou, T. Kupper and W. J. Beyn, Generalized Hopf Bifurcations for
Planar Filippov Systems Continuous at the origin, J. Nonlinear Science 16
(2006), 159–177.

Y. Iwatani and S. Hara, Stability Analysis and Stabilization for Bimodal

Piecewise Linear Systems Based on Eigenvalue Loci Mathematical Engineering

Technical Reports Web page http://www.i.u.-tokyo.ac.jp/mi-e.htm.

could be analyzed just by using the results in 
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A necessary condition for crossing periodic orbits

Proposition Defining the values �� = area (⌦�),
�+ = area (⌦+) and h = yU � yL, then we have

T��� + T+�+ + bh = 0.

b
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The canonical form in the focus-focus case

Assume T± = 2↵±, D± = (↵±)

2
+ (!±)

2
with !± > 0 in the

canonical form, so that the corresponding eigenvalues are �± =

↵± ± i!±, and introduce the parameters

�R =

↵+

!+
, �L =

↵�

!�
, aR =

a+

!+
, aL =

a�

!�
.

Then the previous canonical form can be written in the form

ẋ =

✓
2�L �1

1 + �2
L 0

◆
x�

✓
0

aL

◆
if x 2 S�,

ẋ =

✓
2�R �1

1 + �2
R 0

◆
x�

✓
�b
aR

◆
if x 2 S+.

It su�ces to do a new non-smooth change of variables

(x, y, t)!
✓

x

!(x)

, y,

t

!(x)

,

◆
, where !(x) =

⇢
!

�
if x < 0,

!

+
if x > 0.
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A first step: results for the case without inner equilibria 
(                    )aR  0  aL

Stability of the origin in systems without sliding set

Assuming b = 0 and aR 6 0 6 aL, the following statements

hold.

(a) The origin is asymptotically stable for aL�R < aR�L and

unstable for aL�R > aR�L.

(b) If aL�R = aR�L, then the origin is unstable for �R+�L > 0,

asymptotically stable for �R +�L < 0, and a global center

for �R + �L = 0.
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Results without inner equilibria (                    )aR  0  aL

(Crossing periodic orbits without sliding set) Assuming the conditions

b = 0 and aR 6 0 6 aL, the following statements hold.

(a) If �R +�L = 0, then there is a global nonlinear center around the origin for

aL�R = aR�L, and no crossing periodic orbits when aL�R 6= aR�L.

(b) If �R + �L 6= 0 and �R�L > 0, then there are no crossing periodic orbits.

(c) If �R + �L 6= 0 and �R�L < 0, then for (�R + �L)(aL�R � aR�L) < 0, there

is only one crossing periodic orbit which is stable for �R + �L < 0 and

unstable for �R + �L > 0. When (�R + �L)(aL�R � aR�L) > 0 there are

no crossing periodic orbits.

(Global asymptotic stability of the origin) Under the conditions b = 0 and

aR 6 0 6 aL, the origin is globally asymptotically stable in the two following

cases: (i) when aL�R < aR�L and �R + �L 6 0; (ii) when aL�R = aR�L and

�R + �L < 0.
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Results without inner equilibria (                    )aR  0  aL

Theorem (Systems with escaping sliding set, b > 0) Assuming the conditions aR 6 0 6 aL, b > 0,

the following statements hold.

(a) If �R�L > 0 then there are no crossing periodic orbits for �R + �L > 0, while for �R + �L < 0 there

is only one crossing periodic orbit which is stable.

(b) If �R�L < 0, then the following cases arise.

(b1) If �R + �L > 0 and aL�R > aR�L, then there are no crossing periodic orbits.

(b2) If �R + �L = 0, aL�R < aR�L and we define the value

b1 = 2(aL + aR)

�L

1 + �2
L

= �2(aL + aR)

�R

1 + �2
R

,

then b1 > 0 and there is only one crossing periodic which is stable for 0 < b < b1 and no

periodic orbits for b > b1.

(b3) If �R + �L > 0 and aL�R < aR�L then, there are two hyperbolic crossing periodic orbits for

b su�ciently small, while there are no crossing periodic orbits for b su�ciently big.

If additionally aRaL = 0 with aR + aL 6= 0 there exists a value bSN such that the system has

exactly two hyperbolic crossing periodic orbits for 0 < b < bSN , only one crossing periodic

orbit which is semistable for b = bSN and no crossing periodic orbits for b > bSN .

(b4) If �R +�L < 0, then there is always a stable crossing periodic orbit. If in addition aRaL = 0,
then the above crossing periodic orbit is unique.
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Results without inner equilibria (                    )aR  0  aL

Theorem (Systems with attractive sliding set, b < 0) Assuming the conditions aR 6 0 6 aL and

b < 0, the following statements hold.

(a) If �R�L > 0 then for �R + �L 6 0 there are no crossing periodic orbits, while for �R + �L > 0 there

is only one crossing periodic orbit which is unstable.

(b) If �R�L < 0, then the following cases arise.

(b1) If �R + �L 6 0 and aL�R 6 aR�L, then there are no crossing periodic orbits.

(b2) If �R + �L = 0, aL�R > aR�L and we define the value

b1 = 2(aL + aR)

�L

1 + �2
L

= �2(aL + aR)

�R

1 + �2
R

,

then b1 < 0 and there is only one crossing periodic which is unstable for b1 < b < 0, and

no periodic orbits for b 6 b1.

(b3) If �R + �L < 0 and aL�R > aR�L then, there are two hyperbolic crossing periodic orbits for

|b| su�ciently small, while there are no crossing periodic orbits for |b| su�ciently big.

If additionally aRaL = 0 with aR + aL 6= 0 there exists a value bSN such that the system has

exactly two hyperbolic crossing periodic orbits for bSN < b < 0, only one crossing periodic

orbit which is semistable for b = bSN and no crossing periodic orbits for b < bSN .

(b4) If �R + �L > 0, then there is always a unstable crossing periodic orbit. If in addition

aRaL = 0, then that crossing periodic orbit is unique.
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Results without inner equilibria (                    )aR  0  aL

Bifurcation set in the plane (�R, b) for �L < 0 and aR < 0 < aL < �aR, that is �A > ��L.
Di↵erent bifurcation curves appear: H1 stands for Hopf at infinity, SN indicates saddle-node of periodic
orbits, and p-H means pseudo-Hopf. There are also two co-dimension two bifurcation points A =
(�A, 0), B = (��L, b1) and another C = (��L, 0) where two di↵erent bifurcations (one local and and
another global) simultaneously appear.

γR = −γL

γR

b

p-H

H∞

SN

A

B

C

�A =
aR�L

aL
> ��L > 0
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Results without inner equilibria (                    )aR  0  aL

0 < �A =
aR�L

aL
< ��L

γR = −γL

γR

b

p-H

H∞

SN

A

B

C

Bifurcation set in the plane (�R, b) for the case �L < 0 and �aL < aR < 0 < aL, that is

�A < ��L. Labels have the same meaning as in previous figure.

E. Freire, E.P. and F. Torres, Canonical Discontinuous Planar Piecewise Linear Systems,
SIAM J. Applied Dynamical Systems 11 (2012) 181–211.
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The case with one inner equilibrium (                  )aL · aR > 0

We assume aL < 0 and aR < 0, so that there is one focus in the left

side at eL = (xL, yL) with aL = (1 + �

2
L)xL, yL = 2�LxL, and a (virtual)

focus governing the right dynamics at eR = (xR, yR) with aR = (1 + �

2
R)xR,

yR = 2�RxR + b.

b

eL x

y

y!

eL

b

x

y
y!

y"

Sliding limit cycles of one and two zones
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b

eL x

y
y!

y⇤ = 0

Crossing critical cycle (homoclinic to visible tangency)
 and standard crossing limit cycle 

b

eL

M. Guardia, T.M. Seara, and M. A. Teixeira,

Generic bifurcations of low codimension of planar Filippov Systems,

Journal of Di↵erential Equations 250 (2011) 1967–2023.
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The half-return maps and their dependence on parameters

b > 0

b = 0Asymptotes:

AL(y) = �e

�L⇡
y + 2xL�L(1 + e

�L⇡)

AR�1(y) = �e

��R⇡
y + (b + 2xR�R)(1 + e

��R⇡)
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Hunting limit cycles through elementary bifurcation analysis 
Proposition (sliding periodic orbits) Assume that xL < 0, xR < 0,

b > 0. When �L > 0 the system has no sliding periodic orbits; if �L < 0

and regarding the values ŷ = P

�1
L (0) > 0 and y

⇤
= P

�1
R (ŷ) < b, the

following statements hold.

(a) If ŷ < b then there is one sliding orbit backward in time which lives

in the left zone and it is unstable.

(b) If ŷ = b then there is one sliding orbit both backward and forward

in time, which lives in the left zone and it is unstable.

(c) If ŷ > b then the following cases arise.

(i) If 0 < y

⇤
< b then there is one sliding periodic orbit backward

in time which lives in the two zones and it is unstable.

(ii) If y

⇤
= 0 then there is one crossing critical cycle which is

unstable.

(iii) If y

⇤
< 0 then there are no sliding periodic orbits.
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Proposition Assume that xL < 0, xR < 0 and �L < 0.

Then there exists one smooth function b = bCC(�R) with

0 < bCC(�R) < ŷ and bCC(0) = ŷ/2, defined for every value

of �R such that for b = bCC(�R) the system has one unstable

crossing critical cycle.

In addition there exists " > 0 such that for bCC(�R) � " < b <

bCC(�R) there exists one unstable crossing periodic orbit which

bifurcates from the crossing critical cycle.

       The crossing critical cycle curve in the parameter plane        

We assume xL < 0, �L < 0 and xR < 0 fixed, and look for possible

bifurcations leading to one crossing limit cycle by moving parameters b

and/or �R.

(�R, b)
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Theorem (stable equilibrium and extremal values of b)

Assuming xL < 0, xR < 0, �L < 0 and �R > 0, and defining

b1 = 2(xL + xR)�L, the following statements hold.

(a) If �L +�R < 0 and b > bCC , then there is at least one stable

crossing periodic orbit.

(b) If �L + �R 6 0 and b < 2xL�L, then there are no crossing

periodic orbits.

(c) If �L + �R > 0 and b < bCC , then there is at least one

unstable crossing periodic orbit.

(d) If �L + �R > 0, then there exists a constant M > 0 such

that for all b > M there are no crossing periodic orbits.

(e) If b < b1, then there exist "1 > 0 such that for ��L < �R <

��L + "1, there is at least one unstable crossing periodic

orbit and when b > b1, then there exist "2 > 0 such that

for �"2 � �L < �R < ��L, there is at least one stable

crossing periodic orbit.

       Results that can be deduced from stability of the point at infinity       
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Theorem (stable equilibrium, b near bCC) Assuming that xL < 0, xR < 0,

�L < 0 and �R > 0, the following statements hold.

(a) If �L + �R < 0 there exists " > 0 such that for bCC � " < b < bCC the

system has at least two crossing periodic orbits with opposite stabilities.

(b) Provided that ŷ < b1, the following statements also hold.

(i) Assume �R = ��L. Then, there exists "0 > 0 such that for bCC 6
b < bCC + "0 the system has at least a stable crossing periodic orbit.

In addition, there exists "1 > 0 such that for bCC � "1 < b < bCC

the system has at least two crossing periodic orbits with opposite

stabilities.

(ii) There exists "2 > 0 such that for ��L < �R < ��L + "2 and b =

bCC(�R) the system has at least two crossing periodic orbits with

opposite stabilities. Furthermore, for ��L < �R < ��L + "2 there

exists "3(�R) > 0 such that for b = bCC(�R)� "3(�R) the system has

at least three nested crossing periodic orbits being stable the

intermediate one and unstable the two other.

       Getting our aim by combining  local and global results...  
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�R = ��L

b = bCC(�R)

Hunting the three crossing limit cycles
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�R = ��L

b = bCC(�R)

+"

Hunting the three crossing limit cycles
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�R = ��L

b = bCC(�R)

+"

�"̄

Hunting the three crossing limit cycles
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Conclusions

• The study of all possible dynamics in discontinuous PWL systems with two 
zones is by no means a trivial task, involving a high number of parameters. 

• Some headway is made in this problem thanks to a canonical form with 
fewer parameters. Nevertheless, the full rigorous analysis of this simpler 
family remains a formidable challenge. 

• We have limited here our study to discontinuous piecewise linear systems 
whose dynamics  rotates around the sliding set, resembling the one of a 
smooth focus. Certain bifurcation sets show different codimension-two 
Hopf bifurcation points that deserve a further study. 

• Some location of the parameter region where three nested crossing limit 
cycles are possible, has been gained. It is a remaining problem to determine 
whether three is the maximum number of limit cycles to be found in the 
family.
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