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ABSTRACT

The Newtonian n-Body Problem is modified assuming positive inertial masses
but different sign for the interacting force which is assumed with the pos-
sibility of two different signs for the gravitational masses, according to the
prescription two masses with same sign attract one to the other, two masses
of different sign repel one to the other. As in electrostatics the signed mass
is called charge. The inertial mass is always positive. The two body problem
behaves as the similar Coulomb problem of charged particles with two equal
charges. The solution is a central configuration with almost same behavior
that the Newton two-body problem for hyperbolic orbits. The 3-Body prob-
lem was found with collinear solutions. The four body case of charged central
configurations [1] has only the planar and collinear solutions.

1



1 Introduction

In this paper we present the study of central configurations of few particles (2,
3, 4) that obey Newton’s three laws of motion and Newton’s gravitational
force law [2], [3], assuming the possibility of gravitational charges of both
signs, according to the prescription (which is opposite to that in electrostatics
for electric charges where G would have a negative value) that the force
between two masses with charge of the same sign is attractive, while the
force between two masses with charge of opposite sign is repulsive. More
explicitly, we assume the equations of motion

mj

d2rj

dt2
=
∑

l 6=j

Gelej

r3

lj

(rl − rj) , ∀j (1)

where rj denotes the position vector of particle j in 3D-space, mj is its
positive mass, G is the positive constant of universal gravitation, rlj = |rl−rj|
is the distance between particles j and l, and ej is the charge of particle j
such that mj = |ej|, with two possible choices of sign for the charge ej.

In the following we quote some fundamental equations of classical me-
chanics that are essential in Physics [2], [3].

Equation of motion (1) expresses Newton’s second law equating the posi-
tive inertial mass times the acceleration to Newton’s gravitational force. This
force obeys the action-reaction law or Newton’s third law: the force vector
that particle j exerts on particle l is of equal magnitude and opposite sign
to the force that particle l exerts on particle j. As a consequence, the sum
over all j of the various equations of motion is the null vector

∑

∀j

mj

d2rj

dt2
= 0 . (2)

The few bodies’ masses m1, m2,... are positive and generally different in
value, but some may be equal.

The total mass is
m =

∑

∀j

mj , (3)

The center of mass position is defined as

c =
1

m

∑

∀j

mjrj . (4)
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Equation (2) implies
d2c

dt2
= 0 . (5)

which asserts that the center of mass moves with constant velocity.
With no loss of generality we assume in this paper that

dc

dt
= 0 , c = 0 ,

∑

∀j

mjrj = 0 . (6)

The center of mass is thus at the origin of the system of coordinates rj.
From equation (1) the conservation of total energy E follows, namely

1

2

∑

∀j

mj

drj

dt
· drj

dt
−
∑

l<j

Gejel

rlj

= E . (7)

In this expression the first term on the left hand side is the kinetic energy,
involving the positive inertial masses, while the second term is the potential
energy, which depends on the gravitational charges.

Equation (1) also implies conservation of angular momentum

d

dt

∑

∀j

mjrj ×
drj

dt
= 0 , (8)

which again contains the inertial masses.

2 The integrable two body problem

In this section the positions of the two particles are written in terms of the
relative position r = r2 − r1 as

r1 = −m2

m
r , r2 =

m1

m
r . (9)

The differential equations of motion are

dr

dt
= v ,

dv

dt
= Gm

1

|r|3 r . (10)

With the constants of motion of energy and angular momentum written in
terms of, the specific energy

E =
1

2
|v|2 +Gm

1

|r| (11)
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and the areal velocity
g = r × v = g(0, 0, 1) , (12)

where g is twice the magnitude of the areal velocity. This last implies the
orbit (r and v) is in a plane orthogonal to the constant vector along g. Polar
coordinates: r, ψ, in this plane give us

r = r(cosψ, sinψ, 0) , v = ṙ(cosψ, sinψ, 0) + rψ̇(− sinψ, cosψ, 0) , (13)

where the dot on a letter denotes the time derivative, and

g = r2ψ̇ , E =
1

2
(ṙ2 + r2ψ̇2 +Gm

1

r
) =

1

2
(ṙ2 +

g2

r2
+Gm

1

r
) . (14)

Dividing the second equation in (10) by the first equation in (14) one has

dv

dψ
=

1

ψ̇

dv

dt
=
Gm

g
(cosψ, sinψ, 0) , (15)

which is integrated into

v =
Gm

g
(sinψ,− cosψ, 0) + h , (16)

where h is a constant vector of integration, the Hamilton vector [4], in the
plane of the orbit. Vector v − h traces a circle in velocity space with center
at h and radius Gm

g
.

It is useful define the constant of motion called the Laplace-Runge-Lenz
vector defined here in terms of other constants of motion as

ε =
1

Gm
h × g =

1

Gm
v × g +

r

r
= ε(1, 0, 0) , (17)

which defines the direction of one coordinate axis in the plane of the orbit.
Projecting vector r in this direction (in polar coordinates) lead to the orbit
equation

εr cosψ =
g2

Gm
+ r , (18)

which is a hyperbola with ε > 1, the eccentricity and with p = g2

Gm
, the latus

rectum. The specific energy becomes E = Gm
2a

.
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3 Central configurations of few charged masses.

Are there equilateral few body central con-

figurations?

We define a central configuration as one in which the particle positions,
defined up to rotation around the center of mass and uniform dilatations,
obey the equation

Bmjrj =
∑

l 6=j

Gelej

r3

lj

(rl − rj) , ∀j , (19)

where B is the same quantity for all the particles. In the right side we have
the gravitational force acting on particle j due to the other charges. Using
the fact that the sum of forces is the zero vector, we recover the third element
of hypothesis (6): the origin of coordinates rj is at the center of mass.

For the particular case of the previous section with just two particles
the allowed hyperbolic motion is at any moment in a central configuration
with B = Gm

r3 . In the following, one considers the cases with three and four
particles.

The force of the right hand side of (19) is the gradient of the potential
energy

∑

l 6=j

Gelej

r3

lj

(rl − rj) =
∂

∂rj

∑

l<k

Gekel

rlk

. (20)

The left hand side of (19) is related with the gradient of the total moment
of inertia, I,

mjrj =
∂

∂rj

1

2

∑

∀k

mkrk · rk , (21)

which may be written in terms of the relative distances as

I =
1

2

∑

∀k

mkrk · rk =
1

2m

∑

k 6=l

mkmlr
2

kl . (22)

It follows that the condition for central configurations of few particles in
three dimensions may be expressed in terms of derivatives with respect to
the relative distances r2

ij in the form

elej

r3

lj

= σmlmj , (23)
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where σ is a quantity containing B and G. The left hand side of this equation
is the derivative of the potential energy with respect to the square of the
distance r2

lj, while the right hand side is proportional to the derivative of the
total moment of inertia with respect to the same variable r2

lj.

Theorem 1

Equilateral central configurations do not exist for three or four particles with
gravitational charges of different sign.

Proof: Equation (23) can not possibly be satisfied for all combinations
of indexes because the left hand side takes different signs and the right hand
side has the sign of σ because the m’s are positive. One concludes that there
is no equilateral central configuration for particles with different charges.
Thus, the Lagrange equilateral triangle solution [5], and the Lehman-Filhés
equilateral tetrahedron solution [6] valid for positive charges are not a central
configuration for the case of positive and negative charges. �

4 Collinear Three-Body and planar Four-Body

central configuratios for masses of different

charge

Consider now the question of possible collinear/planar configurations for
Three/Four-Bodies. The modified Dziobek equations for collinear/planar
central configurations of positive and negative charges are

elej

r3

lj

= σmlmj + λSlSj , (24)

where λ is a new parameter and Sk are the directed distances/areas of the
segments/triangles having at their vertexes the two/three particles differ-
ent from k. With respect to equation (23), the additional term takes into
account the zero area/volume restriction necessary for collinear/planar con-
figurations: SlSk is a constant times the derivative with respect to r2

lk of
the square of the area/volume of the triangle/tetrahedron formed by the
three/four particles, which is expressed as the square of the Heron’s equa-
tion/as the so-called Cayley-Menger determinant. A similar equation was
obtained by Dziobek [7], but although the two terms on the right hand side
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of this equation are the same as in Dziobek’s paper, in the left hand side the
charges are replaced by masses.

Note the invariance of the modified Dziobek’s equations with respect to
a sign change of all the charges, as well as their invariance with respect to a
sign change of the directed distances/areas

ej −→ −ej , Sj −→ −Sj .

In order to prove that these equations are equivalent to the equations
defining the central configurations, we need the collinear/planar conditions
[7], [8]

∑

∀j

Sj = 0 ,
∑

∀j

Sjrj = 0 . (25)

Substituting the left hand side of (24) by the right hand side in (19), one
obtains

Bmjrj = G
4
∑

l 6=j

(rl − rj)[σmlmj + λSlSj] = −Gσmmjrj , (26)

where we used the conditions (6) that the center of mass is at the origin, and
the planar configuration properties (25). Thus from (26) we obtain that

B = −Gσm . (27)

In addition, one has the property

4
∑

l=1

4
∑

j=1

SlSkr
2

lj =
4
∑

l=1

4
∑

j=1

SlSj(r
2

l − 2rl · rj + r2

j) = 0 , (28)

where we use the collinear/planar configuration conditions (25). Note that
the terms with j = l in these summations are zero; therefore if we multiply
both sides of equation (24) by r2

lj and we sum over all l and j with l 6= j one
obtains

∑

l,j,l 6=j

elej

rlj

= σ
∑

l,j,l 6=j

mlmjr
2

lj . (29)

In this case σ has not a definite sign because of the presence of charges with
both signs.
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5 Three-Body collinear central configurations

We ordered the coordinates of three particles as x1 < x2 < x3.The Dziobek
equations (24) for the collinear Three-Body Problem central configurations
are

e1e2
m1m2

1

(x2 − x1)3
= σ + β

m3

x2 − x1

(30)

e2e3
m2m3

1

(x3 − x2)3
= σ + β

m1

x3 − x2

(31)

e3e1
m3m1

1

(x3 − x1)3
= σ + β

m2

x1 − x3

, (32)

where β is

β = λ
(x3 − x2)(x2 − x1)(x1 − x3)

m1m2m3

(33)

Theorem 2

It is impossible to have a collinear Three-Body central configuration of dif-
ferent charges with the middle charge equal to one of the other charges.

Proof: Assume the different charge is e3 = −m3. The previous equations
(30-32) are in such a case

1

(x2 − x1)3
= σ + β

m3

x2 − x1

(34)

−1

(x3 − x2)3
= σ + β

m1

x3 − x2

(35)

−1

(x3 − x1)3
= σ + β

m2

x1 − x3

. (36)

Canceling σ between (34) and (36) we have

1

(x2 − x1)3
+

1

(x3 − x1)3
= β

(

m2

x3 − x1

+
m3

x2 − x1

)

, (37)

that implies β > 0.
Canceling σ between (36) and (35) we have

1

(x3 − x2)3
− 1

(x3 − x1)3
= −β

(

m2

x3 − x1

+
m1

x3 − x2

)

(38)
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that implies β < 0, which is a contradiction. �

On the contrary, when the middle charge is the one that has the opposite
sign, the previous equations (30-32) are

− 1

(x2 − x1)3
= σ + β

m3

x2 − x1

(39)

− 1

(x3 − x2)3
= σ + β

m1

x3 − x2

(40)

1

(x3 − x1)3
= σ + β

m2

x1 − x3

. (41)

Canceling σ and β among these three equations we have the equation for
collinear central configurations

m2(x3 − x1)
2(x2 − x1)

3 +m3(x2 − x1)
2(x3 − x2)

3 +m3(x2 − x1)
2(x3 − x1)

3 =

m2(x3−x1)
2(x3−x2)

3+m1(x3−x2)
2(x3−x1)

3+m1(x3−x2)
2(x2−x1)

3 . (42)

Particular collinear central configurations are

x2 − x1

x3 − x2

= 2 , m1 = 34 m2 = 10 , m3 = 5 .

x2 − x1

x3 − x2

=
3

2
, m1 = 105 m2 = 84 , m3 = 20 .

6 Four-Body planar solutions

Write equation (24) divided by the product of masses mlmj as

elej

mlmj

1

r3

lj

= σ + λAlAj , (43)

where Aj = Sj/mj denotes, as in [8], weighted area. Noting that the square
of

elej

mlmj
equals positive one, this equation may also be written as

(

elej

mlmj

1

rlj

)3

= σ + λAlAj , (44)
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A similar equation is the basic tool to compute central configurations in refer-
ence [8] from the given weighted areas Aj. The difference is the replacement
of distance rlj by a sort of charged distance

rlj −→ mlmj

elej

rlj . (45)

The algorithm presented in [8] is also useful for the present case if allowance
is made for these positively or negatively charged distances in the numerical
computation. In that paper the algorithm to compute planar central con-
figurations starting from the weighted areas was applied to several examples
with positive charges. Since the areas of the triangles having its vertices at
the positions of the particles were computed by Heron’s formula in terms
of the square of this distances, they are not modified by the extra factor
(mlmj)/(elej). At the end of the present paper the modified algorithm is
used to obtain some numerical examples of central configurations combining
it with the new algorithm recently proposed to compute central configura-
tions from given masses [9] based on a new system of coordinates [10] which
will be described in the next section. We refer the reader to those references
for a more detailed account.

Substracting term by term equation (43) with subscripts l, j and l, k, and
with subscripts n, j and n, k, with all subscripts different, yields

elej

mlmj

1

r3

lj

− elek

mlmk

1

r3

lk

= λAl(Aj − Ak) , (46)

enej

mnmj

1

r3

nj

− enek

mnmk

1

r3

nk

= λAn(Aj − Ak) . (47)

Elimination of λ between these two equations gives the fundamental relation

Snel

(

ejmk

r3

lj

− ekmj

r3

lk

)

= Slen

(

ejmk

r3

nj

− ekmj

r3

nk

)

. (48)

The same equation was obtained directly from two of the defining equations
for planar central configurations (19). A similar calculation may be found in
reference [8].
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Theorem 3

A planar central configuration of four particles with one charge opposite in
sign to the other three leads to a concave configuration with the different
sign charge in the convex hull of the other three.

Proof: Assume that the charge of particle 1 is of opposite sign to the
charge of the other three particles. Using equation (48) with j = 1, we note
that the quantity in the two parenthesis have the same sign and therefore

S2

S3

> 0 ,
S3

S4

> 0 ,
S4

S2

> 0 . (49)

From the above equation we prove with no loss of generality that the sign
of the charge of any particle may be made to coincide with the sign of the
corresponding area.

S2 > 0 , S3 > 0 , S4 > 0 , S1 < 0 .� (50)

Theorem 4

A planar central configuration of four particles with two pairs of particles of
different sign leads to a convex configuration with charges of the same sign
located at the ends of the two diagonals.

Proof: Consider now the case in which particles 1 and 2 have charges
of one sign and particles 3 and 4 of the opposite sign. Again using equation
(48) with charge j of one sign and charge k of the opposite sign, the quantity
in the parenthesis have the same sign, so that

S1

S3

< 0 ,
S1

S4

< 0 ,
S2

S3

< 0 ,
S2

S4

< 0 . (51)

With no loss of generality we take

S1 > 0 , S2 > 0 , S3 < 0 , S4 < 0 .� (52)

As a consequence, the quotient Sk/ek may be considered to be always
positive.
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Theorem 5

To have a Four-Body central configuration determined by Dziobek-like equa-
tion (24), parameter λ is positive.

Proof: Divide both members of equation (24) by the product of charges
elej to yield

1

r3

lj

= σ
mlmj

elej

+ λ
SlSj

elej

. (53)

Choosing two of these equations, with subscripts say l, j and l, k, such that
the term containing σ in each is of opposite sign, adding member by member
we obtain

(

1

r3

lj

+
1

r3

lk

)

= λ

(

SlSj

elej

+
SlSk

elek

)

. (54)

Since the quantities in the parentheses are both positive, we have proved that

λ > 0 . � (55)

7 New coordinates in the Four-Body Prob-

lem

This section reviews the main ideas and results of the new four-body coordi-
nates of [10], slightly expanded at a few spots but condensed to the minimum
necessary.

We transform from the inertial referential system to the frame of principal
axes of inertia by means of a three dimensional rotation G parameterized
by three independent coordinates. In addition to this rotation, three more
coordinates are introduced, as scale factors R1, R2, R3, which are three
directed distances closely related to the three principal moments of inertia
through

I1 = µ(R2

2
+R2

3
) , I2 = µ(R2

3
+R2

1
) , and I3 = µ(R2

1
+R2

2
) , (56)

where µ is the mass

µ = 3

√

m1m2m3 m4

m1 +m2 +m3 +m4

. (57)
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The first rotation changes nothing and after the scale change the result-
ing four-body configuration has a moment of inertia tensor with the three
principal moments of inertia equal. The second rotation G′ does not change
this property.

The cartesian coordinates of the four particles, with the origin at the
center of gravity, written in terms of the new coordinates are




x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4



 = G





R1 0 0
0 R2 0
0 0 R3



G′T





a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4



 ,

(58)
where G and G′ are two rotation matrices, each a function of three indepen-
dent coordinates such as the Euler angles, and where the column elements
of the constant matrix

E =





a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4



 , (59)

are the coordinates of the four vertexes of a rigid orthocentric tetrahedron
[11], having its center of mass at the origin of coordinates, namely:

a1m1 + a2m2 + a3m3 + a4m4 = 0 ,
b1m1 + b2m2 + b3m3 + b4m4 = 0 ,
c1m1 + c2m2 + c3m3 + c4m4 = 0 ,

. (60)

We introduce the mass matrix

M =









m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4









. (61)

An equivalent condition for having three equal moments of inertia for the
rigid tetrahedron is expressed as

EMET = µ





1 0 0
0 1 0
0 0 1



 (62)

The system of coordinates for measuring the G′ rotation can be chosen in
various ways, from which we prefer to use the same coordinates as in reference
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[9], namely, particle with mass m1 along coordinate axis 3, the other three
in a plane parallel to the coordinate plane containing axes 1 and 2 but that
does not include the particle of mass m1; the particle with mass m2 on an
orthogonal coordinate plane that contains the first particle and the center
of mass, and the other two particles on a line that is parallel to coordinate
axis 1 and perpendicular to the coordinate plane containing the first two
particles. Particle 1 thus has coordinates

(a1, b1, c1) =



0, 0,

√

µ(m−m1)

m1m



 . (63)

Particle 2 has coordinates

(a2, b2, c2) =

(

0,

√

µ(m3 +m4)

m2(m−m1)
,−
√

µm1

(m−m1)m

)

. (64)

Particle 3 has coordinates
(a3, b3, c3) =

(
√

µm4

m3(m3 +m4)
,−
√

µm2

(m3 +m4)(m−m1)
,−
√

µm1

(m−m1)m

)

. (65)

Particle 4 has coordinates
(a4, b4, c4) =

(

−
√

µm3

m4(m3 +m4)
,−
√

µm2

(m3 +m4)(m−m1)
,−
√

µm1

(m−m1)m

)

. (66)

Note that b3 = b4 and c2 = c3 = c4, as they should.
This rigid tetrahedron is the generalization of the rigid triangle of the

Three-Body problem with the center of mass at the orthocenter discussed
previously in [12]. The same triangle was used with different purposes by C.
Simo [13].

Our coordinates are now adapted to the important and old subject [7] of
planar configurations, with the four particles in a constant plane. Since the
z-component of the four particles equals zero, the first rotation is just by one
angle in the plane of motion and the scale factor associated with the third
coordinate is zero, namely





x1 x2 x3 x4

y1 y2 y3 y4

0 0 0 0



 =

14







cosψ − sinψ 0
sinψ cosψ 0

0 0 1









R1 0 0
0 R2 0
0 0 0



G′T





a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4



 . (67)

This equation simplifies to

(

x1 x2 x3 x4

y1 y2 y3 y4

)

=

(

cosψ − sinψ
sinψ cosψ

)(

R1 0 0
0 R2 0

)

G′T





a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4



 , (68)

in terms of six degrees of freedom.
The corresponding expression for the four directed areas in terms of these

coordinates is








S1

S2

S3

S4









= CMETG′





0
0
1



 , (69)

where C is a constant with units of area divided by mass. Note that Equa-
tions (25) are satisfied from this expression of the directed areas since sub-
stitution of equations (68) and (69) in equations (25), and application of
equation (62), yields an identity, independent of coordinates.

For G′ two rotation angles are needed, for which we chose those required
to express the unit vector in spherical coordinates

G′





0
0
1



 =





sin θ cos φ
sin θ sinφ

cos θ



 , (70)

where θ and φ are the spherical coordinates determining this vector. Given
the four masses, the four directed areas are functions, up to a multiplicative
constant C depending on the choice of physical units, of this unit vector
direction only.

The non-collinear planar central configurations are characterized in our
coordinates by constant values of the G′ matrix and of the constant value of
the ratio R1/R2, which are not arbitrary, but they are determined by three
independent quantities as discussed in the following.
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43

2

4 3

2

1

Figure 1: Stereographic projection of the hemisphere of the two angles motion
of the orthocentric tetrahedron. The great circles represent the positions
where three particles are collinear. The four spherical triangles are concave
open sets labeled by the particle at the interior of the triangle. The spherical
quadrilateral open sets correspond to convex configurations with the same
order that the neighboring triangles. The isolated points are at the angles
where a charged central configuration has been computed. The values of
the masses are m1 = 10, m2 = 13, m3 = 15, m4 = 17. The sign of the
charges is opposite for the position inside a concave spherical triangle set
and apposite for the two particles along each diagonal when the particle is
inside a rectangular convex region.

16



From (69) follows that in a planar solution the weighted directed areas
are expressed as









A1

A2

A3

A4









= CETG′





0
0
1



 = CET





sin θ cosφ
sin θ sin φ

cos θ



 . (71)

Therefore, the weighted directed areas are up to a normalization factor equal
to the third rotated coordinate of the rigid tetrahedron. In terms of the
vectors (63-66) and the angles θ and φ this equation is expressed simply as

Aj = C(aj sin θ cos φ+ bj sin θ sin φ+ cj cos θ) . (72)

Choosing C =
√

(m−m1)/µ we have explicitly

A1 =
m−m1√
m1m

cos θ ,

A2 = −
√

m1

m
cos θ +

√

m3 +m4

m2

sin θ sin φ ,

A3 = −
√

m1

m
cos θ −

√

m2

m3 +m4

sin θ sin φ+

√

m4(m−m1)

m3(m3 +m4)
sin θ cos φ

A4 = −
√

m1

m
cos θ −

√

m2

m3 +m4

sin θ sinφ−
√

m3(m−m1)

m4(m3 +m4)
sin θ cos φ .

(73)
Note that a sign change of the unit vector (47) produces a simultaneous
sign change in these four Aj’s which does not to give a different central
configuration. Therefore, it suffices to consider only the hemisphere 0 ≤ θ ≤
π/2.

8 Computing central configurations for posi-

tive and negative charges

In the case of positive charges, since the lengths and masses are defined
up to arbitrary units, with no loss of generality we assumed in [8] that the
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parameter σ equals plus one. However, central configurations with charges
of different sign obtained numerically always yield a negative σ, so that for
those cases we used σ = −1 as follows

ej ek

mj mk

r−3

jk = −1 + λAjAk (j 6= k). (74)

We recall that in the paper by Piña and Lonngi [8] the assumption that
the directed weighted areas are known as four given constants was made.
The equation which corresponds to (51) then gives the distances as functions
of the unknown parameter λ. Through them, the areas of the four triangles
become functions of λ, that should satisfy restrictions (25) for a planar solu-
tion. These restrictions allow in many cases to determine the value of λ and
hence the values of the six distances and the four masses. This is an implicit
way to deduce planar central configurations with four masses.

In contrast, in this paper, as well as in reference [9], we assume that the
four masses are known from the beginning. The four weighted areas are then
determined by expressions (73) in terms of the two tuning variables θ and φ.
Particular values of these two angles determine the four constants Aj, up to
a multiplicative factor, which in turn produce a central configuration with
computed distances and masses. The computed masses are in general not
equal (or proportional) to the starting values used to build the orthocentric
tetrahedron. The two angles are then tuned until a numerical match is pro-
duced between the given and the computed masses. The distances between
particles, computed for this central configuration, correspond to the given
masses.

For the arbitrarily chosen values of the masses m1 = 10, m2 = 13, m3 =
15, m4 = 17 seven central configurations were found in [1].

We remark that, with the same values of the masses, the seven central
configurations found in the case of positive values of the charges [9], reduces
to one central configuration of different distribution of charges for each cor-
responding case. In all the cases the angles are different from the values
previously computed in [9].

9 Collinear Four-Body central configurations

The collinear case is very similar to the planar case. Assume the particles
are ordered in the line with coordinates: r1 < r2 < r3 < r4.In this case the

18



r(20) > r(13)r(20) > r(13)

r(13) > r(20)

r(7) > r(20)

r(20) > r(6)

r(20) > r(7)

r(7) > r(20)

r(7) > r(6)r(7) > r(6)

r(7) > r(6)

r(20) > r(6)

r(20) > r(6)

r(13) > r(7)

r(7) > r(13)

r(6) > r(13)

r(13) > r(6)

r(7) > r(13)

r(6) > r(20) r(13) > r(7)

r(6) > r(13)

Figure 2: The set of the four-body collinear configurations in the central circle
by the stereographic projection of the hemisphere of the two angles position
of the orthocentric tetrahedron. The great circles represent the ri positions
where two particles have the same coordinate. Each point on the hemisphere
represent a different collinear configuration. The particular permutation is
determined by the inequalities of the coordinates associated to two masses
on both sides of the great circles. Each of the interior of the twelve spherical
triangles represent the set of different collinear configurations with the same
permutation order. The values of the masses are m1 = 20, m2 = 13, m3 =
7, m4 = 6. The inequalities between coordinates in figure are labeled with
the numerical value of the corresponding masses. To simplify compilation
the r’s in figure are not italic fonts.
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configuration is determined by three distances between particles a = r2 − r1,
b = r3 − r2, c = r4 − r3. Using the fact that the coordinates are defined with
respect to the center of mass: m1r1 +m2r2 +m3r3 +m4r4 = 0, it is possible
to write the positions rj in terms of the masses and the distances a, b, c









r1
r2
r3
r4









=









0 −a −(a + b) −(a + b + c)
a 0 −b −(b + c)

a + b b 0 −c
a + b+ c b + c c 0

















m1

m
m2

m
m3

m
m4

m









. (75)

The 4 × 4 matrix

A =









0 −a −(a + b) −(a+ b + c)
a 0 −b −(b + c)

a+ b b 0 −c
a+ b + c b+ c c 0









(76)

is skew-symmetric with zero determinant. It is expressed in terms of the
orthogonal vectors

A =









1/2
1/2
1/2
1/2

















−3a/2 − b− c/2
a/2 − b− c/2
a/2 + b− c/2
a/2 + b+ 3c/2









T

−









−3a/2 − b− c/2
a/2 − b− c/2
a/2 + b− c/2
a/2 + b + 3c/2

















1/2
1/2
1/2
1/2









T

.

(77)

Vector with entries rj, or the parallel F with entries
Fj

mjG
, will be perpen-

dicular to two linearly independent vectors orthogonal to the vectors in this
equation. Two particular, linearly independent vectors are

k1 =









c
−c
−a
a









, k2 =









0
c

−(b + c)
b









(78)

Theorem 6

It is impossible to have a collinear Four-Body central configuration with a
different charge outside the other three charges.
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Proof: Assume the different charge is at r4, then the forces in terms of
masses and distances are

F1

m1G
=

m2

a2
+

m3

(a + b)2
− m4

(a + b+ c)2
(79)

F2

m2G
= −m1

a2
+
m3

b2
− m4

(b + c)2
(80)

F3

m3G
= − m1

(a+ b)2
− m2

b2
− m4

c2
(81)

F4

m4G
=

m1

(a+ b+ c)2
+

m2

(b+ c)2
+
m3

c2
. (82)

Interior product with the vector k1 + k2 is always positive, all the negative
terms are exactly canceled by positive terms. It can never been zero. �

Theorem 7

It is impossible to have a collinear Four-Body central configuration with two
charges of one sign on one side of the line and two charges of opposite sign
on the other side.

Proof: Assume charges 1 and 2 are positive and charges 3 and 4 are
negative. The forces for this distribution of charges are

F1

m1G
=

m2

a2
− m3

(a + b)2
− m4

(a+ b + c)2
(83)

F2

m2G
= −m1

a2
− m3

b2
− m4

(b + c)2
(84)

F3

m3G
=

m1

(a+ b)2
+
m2

b2
+
m4

c2
(85)

F4

m4G
=

m1

(a+ b + c)2
+

m2

(b + c)2
− m3

c2
. (86)

The interior product with the vector k2 is always positive definite. It can
never been zero. �

Theorem 8

It is impossible to have a collinear Four-Body central configuration with two
charges of one sign inside the two charges of opposite sign.
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Proof: Assume charges 1 and 4 are with different sign than charges 2
and 3. The forces for this distribution of charges are

F1

m1G
= −m2

a2
− m3

(a+ b)2
+

m4

(a+ b + c)2
(87)

F2

m2G
=

m1

a2
+
m3

b2
− m4

(b + c)2
(88)

F3

m3G
=

m1

(a+ b)2
− m2

b2
− m4

c2
(89)

F4

m4G
= − m1

(a + b+ c)2
+

m2

(b+ c)2
+
m3

c2
. (90)

The interior product with the vector k1 + k2 is always positive definite. It
can never been zero. �

The possibility of collinear central configuration of gravitational charges
of both signs is discovered by numerical computation of several cases, by
means of the algorithm to be published in [14]. Many central configuration
with two particles of one charge and the other with different charge have been
obtained when the sign of the charges alternates in the line: r1 and r3 of one
sign, r2 and r4 of the opposite sign. Collinear central configurations with
one charge different of the other has been computed in several cases when
the different charge is located between two of the opposite charged particles.
The presence of one different charge perturb the positions of the three others
which expand when the value of the different charge increases.
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Appendix

In the mathematical literature we have found some papers in the context of
determining Four-Body central configurations that consider negative masses
[15], [16], [17], [18], with a different equation of motion, a different defini-
tion of central configuration and without distinguishing between masses and
charges. The difference with respect to the differential equation of motion
used in those papers is stressed in this Appendix, where assuming the validity
of Newton’s second and third laws, the equation of motion used by those Au-
thors is shown to produce, for a system of two masses of equal magnitude but
different inertial and gravitational sign, a rigid body which is self-accelerated
with no external force, violating Newton’s first law.

In this paper we assume an equation of motion for the particles different
from that used in references [15], [16], [17], [18]. We will show that their
equation of motion applied to two particles of opposite charge, leads to a
contradiction with Newton’s first law of motion: under no external force, a
body moves with a constant velocity vector.

To help distinguish clearly, we continue using the notation ej to denote
the charge with two possible choices of sign which these Authors denote with
mj. Their equation of motion is

d2r1

dt2
=
Ge2
r3

12

(r2 − r1) ,
d2r2

dt2
=
Ge1
r3

12

(r1 − r2) , (91)

which differ from equation (1) due to substitution of the mass mj by the
charge ej, and that only two particles of opposite charge e1 = −e2 are con-
sidered.

The product of the first times e1, of the second times e2 and adding
member by member we obtain instead of zero acceleration of the center of
mass, zero acceleration of the relative position

e1
d2(r2 − r1)

dt2
= 0 , (92)

which is trivially integrated in terms of two constant vectors of integration
A and B

r2 − r1 = A + Bt . (93)

Assume the initial condition B = 0. Then the relative distance is constant

r2 − r1 = A , (94)
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as if forming a rigid body. The two particles are however accelerated with
the same constant acceleration

d2r1

dt2
=
d2r2

dt2
=
Ge2
|A|3A , (95)

which contradicts Newton’s first law since no external force is acting on this
composite body.

References

[1] E. Piña and P. Lonngi Central configurations of Four Bodies with Grav-

itational Charges of Both Signs, Qualitative Theor. of Dyn. Sys. Vol. 11,
Pags. 215-229 (2012). Published online (28 october 2011) DOI: 10.1007/s
12346-011-0057-6.

[2] S. T. Thornton & J. B. Marion Classical Dynamics of Particles and

Systems 5th edition (Thomson Brooks/Cole, Mexico, 2004).

[3] J. V. Jose & E. J. Saletan Classical Mechanics, A Contemporary Ap-

proach (Cambridge University Press, Cambridge, 1998).

[4] J. Milnor On the geometry of the Kepler Problem, American Mathemat-
ical Monthly 80 353-365 (1983).

[5] J.-L. Lagrange Essai sur le Problème des Trois Corps Œuvres VI 292
(1772)

[6] R. Lehman-Filhés, Ueber swei Fälle des Vielkörpersproblems Astr.
Nachr. 127 137-144 (1891).
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