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Introduction

For d > 0 we consider in Rd (respectively Cd) the real (respectively
complex) polynomial differential system of degree m:

ẋ1 = P 1(x1, . . . , xd),
· · · · · ·

ẋd = P d(x1, . . . , xd),

(1)

where m ≥ 1 is the maximum of the degrees of the polynomials Pi
for i = 1, . . . , d.

The polynomial vector field X of degree m in Fd associated to system
(1) is

X(x1, . . . , xd) =
d∑
i=1

P i(x1, . . . , xd)
∂

∂xi
, (2)

where F is either R, or C.

In the particular case that all polynomials P i are homogeneous of
degree m, then we say that the polynomial differential system (1) or
its associated polynomial vector field X is homogeneous of degree m.

The main objective of our paper is to study the number of invariant
straight lines through the origin taking in account their multiplicities
that a homogeneous polynomial vector field X can exhibit, of course
when this number is finite. The main result in this direction is stated
in Section Main Theorem. As an application of this main result we get
information on the number of infinite singular points of the polynomial
vector field of Rd, see Propositions 3 and 4.

Let X be a homogeneous polynomial vector field of degree m ≥ 1 in
Fd with d ≥ 1. We say that the complex straight line through the
origin of Cd with director vector v ∈ Cd \ {0} is invariant by the flow
of X , if X(v) = λv for some λ ∈ F. Let (x1, . . . , xd) ∈ Cd \ {0} be
a director vector of an invariant straight line through the origin of X .
Then, either there exists λ 6= 0 such that

P i(x1, . . . , xd) = λxi, for i = 1, . . . , d, (3)

if the straight line is not formed by singular points; or

P i(x1, . . . , xd) = 0, for i = 1, . . . , d, (4)

otherwise. We shall work with vector fields X such that the number
of solutions of systems (3) and (4) is finite, of course proportional
solutions are counted as one.

This definition generalizes the notion of invariant straight line asso-
ciated to an eigenvector of a homogeneous linear differential system
(i.e. a homogeneous polynomial differential system of degree 1) in
Fd to a homogeneous polynomial differential system of degree m in
Fd. Note that we always work with complex invariant straight lines
independently if the homogeneous polynomial differential system (1)
is real or complex.

1. Main Theorem

Let Xd,m be the space of all homogeneous polynomial vector fields

X of degree m ≥ 1 in Fd with d ≥ 1. We consider in Xd,m the
topology of the coefficients; i.e. we identify the space Xd,m with the

space FN where N is the maximum number of coefficients that a
homogeneous polynomial vector field of degree m in Fd can have. We
define subspace X ∗∗d,m of Xd,m with induced topology by Xd,m which

is an open and dense subset of Xd,m (see for more details [2]). So the
vector field of X ∗∗d,m are generic in the set of all vector fields Xd,m.

Theorem 1. Let X be a vector field of X ∗∗d,m , and let Nd,m be the

number of its invariant straight lines through the origin, counted with
multiplicities . Then

Nd,m =

d−1∑
k=0

mk = 1 +m +m2 + ... +md−1

Consider as examples well known systems:

Example 1. For linear systems Nd,1 =
∑d−1
k=0 1

k = d

Example 2. For one equation N1,m =
∑0
k=0m

k = 1

Example 3. For two equations N2,m =
∑1
k=0m

k = 1 +m

In [2] we stated the following open question: the Theorem must also
hold under the non-generic conditions.

Later on this open question has been answered in positive by Feng
Rong [6].

Since Nm,d = 1 + m + m2 + · · · + md−1 is odd when m is even
or d is odd, and the complex (non–real) solutions of a system of real
polynomials appear by pairs (one solution and its conjugated), from
Theorem 1 it follows immediately the following result.

Corollary 2. Let X be a real homogeneous polynomial vector field
(2) of degree m ≥ 1 in Rd with d ≥ 1 having finitely many invari-
ant straight lines Nm,d through the origin taking into account their
multiplicities. Then generically X has some real invariant straight line
passing through the origin of Rd when m is even or d is odd.

2. Proof of Main Theorem

The key tool in the proof of Theorem 1 is the Bezout Theorem in the
complex projective space CP d, see [3] and mainly [1] p. 198. More
precisely, the number of solutions of a system

F1(x0, . . . , xd) = 0, . . . , Fd(x0, . . . , xd) = 0,

of d homogeneous polynomial equations in d + 1 unknowns is either
infinite or equal to the product of the degrees, provided that their
solutions are counted with their intersection numbers or multiplicities.
Of course only non–zero solutions are considered, and proportional
solutions are counted as one.

So without loss of generality we can assume that all the solutions
(x1, . . . , xd) ∈ Cd \ {0} of systems (3) and (4) satisfy that xi 6= 0
for all i = 1, . . . , d; otherwise we do a rotation of SO(d) to the ho-
mogeneous polynomial vector field X . Therefore, the director vectors
(x1, . . . , xd) of the invariant straight lines satisfying systems (3) and
(4) must verify

P 1(x1, . . . , xd)

x1
= · · · = P d(x1, . . . , xd)

xd
. (5)

Hence, we can assume that the director vectors (x1, . . . , xd) ∈ Cd \
{0} of the invariant straight lines of the homogeneous polynomial
vector field (2) must satisfy the system

xiP
j(x1, . . . , xd)− xjP i(x1, . . . , xd) = 0, for 1 ≤ i < j ≤ d,

xi 6= 0, for i = 1, . . . , d,
(6)

in both cases (3) and (4). Since we are interested in the solutions of
system (6) having all their coordinates different from zero, we shall
put special attention to the solutions of the subsystem

xiP
i−1(x1, . . . , xd)− xi−1P i(x1, . . . , xd) = 0, for i = 2, . . . , d,

xi 6= 0, for i = 1, . . . , d.
(7)

We assume that X is a homogeneous polynomial vector field of degree
m ≥ 1 in Fd with d ≥ 1 having finitely many invariant straight
lines all of them with director vector without any zero component. In
other words, for such vector fields we want to study the solutions of
the homogeneous polynomial system (7) having all their components
non–zero taking into account their multiplicities, for a definition of
multiplicity see [1]. For doing this study a key point will be to control
the solutions of system (7) with their multiplicities having some zero
component.

For studying the solutions of system (7) we will apply Bezout The-
orem, considering the first set of equations of system (7) defined in
CP d−1, and we want to compute its solutions in CP d−1 having all
their components different from zero.

Of course, for d = 1 Theorem 1 is trivial because the phase space of
these systems is the straight line F through the origin.

For d = 2 the result is not new, see for instance [4], nevertheless we
give here the proof in the case d = 2. For d = 2 the first system of
(7) reduces to

x2P
1(x1, x2)− x1P 2(x1, x2) = 0. (8)

So, by the Fundamental Theorem of Algebra this homogeneous poly-
nomial equation of degree m + 1 has m + 1 solutions in CP 1.

When x1 = 0 equation (8) becomes x2P
1(0, x2) = 0. We shall see

that this equation has no solutions in CP 1. Indeed x2 cannot be zero
because we are in CP 1, so P 1(0, x2) = 0. This means that x1 is a
factor of P 1(x1, x2), and consequently the polynomial of the left hand
side of (8) is identically zero when x1 = 0. In other words the straight
line with director vector (0, 1) is invariant, but we do not allow that
there are invariant straight lines having director vectors with some zero
component. In short, we have proved that equation has no solutions
with x1 = 0.

In a similar way we can prove that equation (8) has no solutions in
CP 1 with x2 = 0. Therefore, it follows that the m+1 solutions of (8)
have their two components different from zero. In short, statement of
Theorem 1 holds for d = 2.

Also we prove Theorem 1 for d = 3, 4, 5 and provide the steps for
proving Theorem 1 for arbitrary d > 5. For more details of the proof
see [2].

3. Applications

A polynomial vector field X in Rd can be extended to an analytic
vector field p(X) on the closed unit ball of Rd+1, in such a way that
the interior of this ball is diffeomorphic to Rd and the boundary of
the ball plays the role of the infinity of Rd. This extension is called
the Poincaré compactification, for more details see [5]. Using this
extension we can talk about the singular points of X at infinity, or
simply about the infinite singular points of X . That is, the singular
points of p(X) which are in the boundary of the closed ball.

Under the assumptions of Theorem 1 the number 2Nm,d is equal to
the number of infinite singular points of X . More precisely, we have
the following two results on the infinite singular points for a polynomial
vector field of Rd, the first is for homogeneous polynomial vector field
and the second for arbitrary polynomial vector fields.

Proposition 3. Let X be a homogeneous polynomial vector field (2)
of degree m ≥ 1 in Rd with d ≥ 1 belonging to X ∗∗d,m. Then the

number 2Nm,d is an upper bound for the number of infinite singular
points of X . This upper bound is reached if all the invariant straight
lines through the origin of X are real.

The results of Proposition 3 can be extended to an arbitrary polynomial
vector fields of Rd, not necessarily homogeneous. More precisely, we
have the following result.

Proposition 4. Let X be a real polynomial vector field (2) of degree
m in Rd. Let P im(x1, . . . , xd) be the homogeneous part of degree m
of the polynomial P i(x1, . . . , xd), for i = 1, . . . , d. Assume that the
homogeneous vector field

d∑
i=1

P im(x1, . . . , xd)
∂

∂xi
.

belongs to X ∗∗d,m. Then the number 2Nm,d for the homogeneous

polynomial vector field

d∑
i=1

P im(x1, . . . , xd)
∂

∂xi
.

is an upper bound for the number of infinite singular points of X .
This upper bound is reached if all the invariant straight lines through
the origin of homogeneous part of X are real.
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