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Abstract
We study a class of quadratic reversible polynomial vector fields on S2 with (3, 2)-type reversibility. We classify all isolated singularities

and we prove the nonexistence of limit cycles for this class. Our study provides tools to determine the phase portrait for these vector fields.

Introduction
A polynomial vector field X in R3 is a vector field of the form

X = P (x, y, z)
∂

∂x
+Q(x, y, z)

∂

∂y
+R(x, y, z)

∂

∂z
, (1)

where P , Q and R are polynomials in the variables x, y and z with
real coefficients. We denote m = max{degP, degQ, degR} the
degree of the polynomial vector field X . In what follows, X will
denote the above polynomial vector field.

Let S2 be the 2–dimensional sphere {(x, y, z) ∈ R3 : x2+y2+z2 =
1}. A polynomial vector field X on S2 is a polynomial vector field
in R3 such that restricted to the sphere S2 defines a vector field on
S2; i.e. it must satisfy the equality

xP (x, y, z) + yQ(x, y, z) + zR(x, y, z) = 0, (2)

for all points (x, y, z) of the sphere S2.

The vector field (1) is called time-reversible if there is a smooth
involution φ : R3→ R3, i.e. φ ◦ φ = id, satisfying the relation

X(φ(x, y, z)) = −dφ(x, y, z)X(x, y, z), (x, y, z) ∈ R3. (3)

In particular, if the dimension of the fixed point set of φ, Fix{φ},
is equal to k, then (1) is said to be of (3, k)-type reversibility. It is
clear that 0 ≤ k < 3 (see [2]).

Various types of reversible systems have been investigated for many
authors. For example, in [12] all (2, 1)-type reversible systems are
classified, in [3] (2, 0)-type, and in [9] (3, 2)-type. In [4], there is an
exploration on (3, 1)-type reversible vector fields having a nilpotent
linear part.

By (3), if a quadratic polynomial vector field on R3 is of (3, 0)-type
reversibility and has a linear involution, then it is a homogeneous
polynomial vector field on R3. The quadratic homogeneous poly-
nomial vector fields on S2 have been studied in [6, 7, 8, 11]. In these
papers, the main problems in the qualitative theory of ordinary dif-
ferential equations, like determination of limit cycles, bifurcations
and center–focus problem, are studied. More precisely, the authors
solve the center-focus problem, study the Hopf bifurcation and give
a topological classification of all global phase portraits to this kind
of vector fields modulo limit cycles. The next step in this direction
is study the quadratic polynomial vector fields on S2 of (3, k)-type
reversibility with a linear involution and k = 1, 2. In [10] the case
(3, 1)-type was studied, the authors determined the global phase por-
traits of this class and the main question in qualitative theory was
resolved.

In this paper we study quadratic polynomial vector fields on S2 of
(3, 2)-type reversibility with a linear involution.

Main results

The main results of this paper are the following ones.

The first theorem give us the general expression of the quadratic
polynomial vector fields on S2 of (3, 2)-type reversibility with a lin-
ear involution.

Theorem 1. Let X be a quadratic polynomial vector field on R3.
Then X is a polynomial vector field on S2 of (3, 2)-type reversibility
with a linear involution if and only if the system associate to X can
be written as

ẋ = P (x, y, z) = a1z + a2xz + a3yz,
ẏ = Q(x, y, z) = b1z + b2xz + b3yz,

ż = R(x, y, z) = c0 − a1x− b1y − (a2 + c0)x
2 − (a3 + b2)xy

−(b3 + c0)y
2 − c0z2.

(4)

We call the singularities of system (4) on equator S1 = S2∩{z = 0}
of nonsymmetric singularities and the singularities which do not
belongs to S1 of symmetric singularities.

The next two theorems characterizes the symmetric and nonsym-
metric isolated singularities of system (4), respectively.

Theorem 2. Let X be the vector field associated to system (4) and
let p be a symmetric singularity of X . We can assume that b1 = 0.
If p is isolated, then we have a2b3 − a3b2 6= 0 and (a2b3 − a3b2)2 −
a21(b

2
2+ b

2
3) > 0. Moreover p can be either a node, a focus, a saddle

or a center (see Figures 1, 2, 3, 4).

Theorem 3. Let X be the vector field associated to system (4) and
let p be a nonsymmetric isolated singularity of X . We can assume
that p = (1, 0, 0), i.e. a1 = −a2.

1. If (a3 + b1 + b2)(b1 + b2) < 0, then p is a saddle.

2. If (a3 + b1 + b2)(b1 + b2) > 0, then p is a center.

3. If b1 = −b2 and a3 6= 0, we denote λ = (b3 − a2)2 + 4b2a3 and
β = b23 + a3b2, then

• p is a saddle when a3b2 − a2b3 > 0;
• when a3b2 − a2b3 < 0 and a2 + b3 6= 0, p is either a center if
λ < 0, or a singularity with a elliptic sector and a hyperbolic
sector if λ ≥ 0 (see Figure 5);
• when b3 = −a2, p is either a center if a22+a3b2 < 0 or a saddle

if a22 + a3b2 > 0.

4. If a3 = −(b1 + b2) 6= 0, we have that

• p is a cusp when a2 − 2b3 6= 0 (see Figure 6);

• to a2 = 2b3, p is either a saddle when
b1

2b1 + b2
< 0 or a center

when
b1

2b1 + b2
> 0, or a cusp when b1 = 0 and b3 6= 0.

5. If a3 = 0, b2 = −b1, we have that

• p is a cusp when a2(2b3 − a2) < 0;
• p is a singularity with two elliptic sector when a2(2b3−a2) > 0

(see Figure 7);
• p is a center when a2 = 0, b1 6= 0 and b3 = 0;
• p is a center when a2 = 2b3 and b21 + b23 6= 0.

The next result give us upper bound for the number of singularities
of system (4).

Proposition 1. Let X = (P,Q,R) be a vector field associate to
system (4). Suppose that X has isolated singularities, then it has
at most six singularities. Moreover, X has at most two symmetric
isolated singularities.

Let U be an open subset of R2. Here a nonconstant analytic function
H : U → R is called a first integral of a vector field Y on U
if it is constant on all solutions curves (x(t), y(t)) of Y on U ; i.e.
H(x(t), y(t)) is constant for all values of t for which the solution
(x(t), y(t)) is defined in U . Clearly H is a first integral of the vector
field Y on U if and only if Y H ≡ 0 on U .

Consider a polynomial vector field Y on S2, through the stereo-
graphic projection, the vector field Y induces a polynomial vector
field on the plane denoted by P(Y ). We say that Y is integrable on
S2 if P(Y ) has a first integral.

Theorem 4. Let X be the vector field associated to system (4), then
it is integrable on S2.
Theorem 5. Let X be the vector field associated to system (4), then
it does not have a limit cycle on S2.

Figure 1: Phase portrait to system
(4) with a1 = a3 = 0, a2 = 1, b1 =

b2 = 0 and b3 = 2.

Figure 2: Phase portrait to system
(4) with a1 = a3 = 0, a2 = 1, b1 =

b2 = 0 and b3 = 2.

Figure 3: Phase portrait to system
(4) with a1 = a3 = 0, a2 = 1, b1 =

b2 = 0 and b3 = 2.

Figure 4: Phase portrait to system
(4) with a1 = a3 = 0, a2 = 1, b1 =

b2 = 0 and b3 = 2.

Figure 5: Phase portrait to system
(4) with a1 = a3 = 0, a2 = 1, b1 =

b2 = 0 and b3 = 2.

Figure 6: Phase portrait to system
(4) with a1 = a3 = 0, a2 = 1, b1 =

b2 = 0 and b3 = 2.

Figure 7: Phase portrait to system
(4) with a1 = a3 = 0, a2 = 1, b1 =

b2 = 0 and b3 = 2.
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