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Introduction

Theorem (G. D. Birkhoff, 1929)

There is an entire function f : C — C such that, for any entire function
g : C — C and for every a € C\ {0}, there is a sequence (ng)« in N such that

Iizn f(z + ank) = g(z) uniformly on compact sets of C.
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Introduction

Birkhoff's result, in terms of dynamics

@ H(C):={f:C— C; fis entire}.
@ Endow H(C) with the compact-open topology 7o (topology of uniform
convergence on compact sets of C).

o Consider the (continuous and linear!) map
T, : H(C) — H(C), f(z)~ f(z+ a).
@ Then there are f € H(C) so that the orbit under T;:

Orb(T,, f) := {f, T.f, T2f,...}

is dense in H(C).
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Introduction

Framework and definitions

@ From now on X will be a separable Fréchet space and T : X — X an
operator.

o Given x € X, its orbit under an operator T : X — X is:
Orb(T,x) := {x, Tx, T°x,... }.

@ An operator T : X — X on a Fréchet space X is hypercyclic if there are
x € X such that Orb(T,x) = X.
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Introduction

Rolewicz, 1969

No finite dimensional space admits a hypercyclic operator
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Introduction

—

Birkhoff transitivity theorem, 1920

Rolewicz, 1969

No finite dimensional space admits a hypercyclic operator

The following are equivalent:
a) T is hypercyclic;
b) T is topologically transitive:

YU,V C X open and non-empty, In e N: T"(U) NV # (.
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Li-Yorke and distributional chaos

Li-Yorke and distributional chaos

o (Li-Yorke, 1975) An uncountable subset S C X of a metric space (X, d) is
called a scrambled set for a dynamical system f : X — X if for any
x,y € S with x # y we have liminf, d(f"(x),f"(y)) =0 and
limsup, d(f"(x), f"(y)) > 0. f is called Li-Yorke chaotic if it admits an
scrambled set.
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Li-Yorke and distributional chaos

Li-Yorke and distributional chaos

o (Li-Yorke, 1975) An uncountable subset S C X of a metric space (X, d) is
called a scrambled set for a dynamical system f : X — X if for any
x,y € S with x # y we have liminf, d(f"(x),f"(y)) =0 and
limsup, d(f"(x), f"(y)) > 0. f is called Li-Yorke chaotic if it admits an
scrambled set.

o (Schweizer-Smital, 1994) A dynamical system f : X — X with a scrambled
set S is distributionally chaotic on S if, additionally, there is § > 0 so
that for each € > 0 and each pair x,y € S of distinct points we have

card({k < n : d(f(x), f*(y)) < 5}) —0

(1) Iimninf -
and
(2) limsup card({k < n : d(f"(x), ")) <e}) = 1L
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Li-Yorke and distributional chaos

A
@ We recall that the upper density dens(A) of a set A C N is defined by:

card(ANA{1,...,n})

dens(A) = lim sup
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Li-Yorke and distributional chaos

A
@ We recall that the upper density dens(A) of a set A C N is defined by:

card(ANA{1,...,n})

dens(A) = lim sup

o Equivalent definition of distributional chaos: A dynamical system
f : X — X with a scrambled set S is distributionally chaotic on S if there
is d > 0 so that for each £ > 0 and each pair x,y € S of distinct points we
have
(1) dens({k €N : d(F (x), F*(y)) = o}) = 1

and

(2) dens({k € N; d(f“(x),f“(y)) <e}) =1.
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Li-Yorke and distributional chaos

@ Given a sequence v = (v,)n of positive weights, we will consider the
weighted ¢P-space (1 < p < 0):

oo 1/p
X=0W)=xek" xl= (Y15l v] <o}

j=1
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Li-Yorke and distributional chaos

@ Given a sequence v = (v,)n of positive weights, we will consider the
weighted ¢P-space (1 < p < 0):
oo 1/p
X=0W)i={xeK" i x]= (S IxP v| <o}
j=1
@ The backward shift T = B : (P(v) — £P(v)
B(x1, x2, X3, . ..) i= (X2, X3, Xa, - . .)
is well-defined (equivalently, continuous) iff sup, v::1 < 00.
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Li-Yorke and distributional chaos

(Salas, 1995)
The backward shift B is hypercyclic on X = ¢°(v) if and only if liminfs vx = 0.
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Li-Yorke and distributional chaos

(Salas, 1995)

The backward shift B is hypercyclic on X = ¢°(v) if and only if liminfs vx = 0.

(Godefroy. Shapiro, 1991)

The backward shift B is Devaney chaotic on X = ¢°(v) if and only if
2 ien Vi < 00
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Li-Yorke and distributional chaos

(Salas, 1995)
The backward shift B is hypercyclic on X = ¢°(v) if and only if liminfs vx = 0.

(Godefroy. Shapiro, 1991)

The backward shift B is Devaney chaotic on X = ¢°(v) if and only if
2 ien Vi < 00

(Martinez-Giménez, Oprocha, Peris, 2009)

If the backward shift B is Devaney chaotic on X = ¢°(v), then it is
distributionally chaotic.

Alfred Peris, Universitat Politécnica de Valéencia Distributional chaos for linear operators



i-Yorke and distributional chaos

‘

(Salas, 1995)

The backward shift B is hypercyclic on X = ¢°(v) if and only if liminfs vx = 0.

(Godefroy. Shapiro, 1991)

The backward shift B is Devaney chaotic on X = ¢°(v) if and only if
2 ien Vi < 00

\

(Martinez-Giménez, Oprocha, Peris, 2009)

If the backward shift B is Devaney chaotic on X = ¢°(v), then it is
distributionally chaotic.

\

(Martinez-Giménez, Oprocha, Peris)

Let vj := 1/k, nk <j < nis1, where n := (k!)?, k € N. Then T := B is
hypercyclic on X = ¢P(v), but it is not distributionally chaotic.

A\
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Li-Yorke and distributional chaos

o (Beauzamy, 1988) A vector x € X is called irregular for an operator
T : X — X on a Banach space X provided that sup, || T"x|| = co and
inf, || T"x|| = 0. In particular, the line S := {Ax : X € K} is a scrambled
set for T.
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Li-Yorke and distributional chaos

o (Beauzamy, 1988) A vector x € X is called irregular for an operator
T : X — X on a Banach space X provided that sup, || T"x|| = co and
inf, || T"x|| = 0. In particular, the line S := {Ax : X € K} is a scrambled
set for T.

o (Prajitura, 2009) An operator T : X — X is completely irregular if every
x € X \ {0} is irregular. In particular, the full space S = X is a scrambled
set for T. )
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Li-Yorke and distributional chaos

o (Beauzamy, 1988) A vector x € X is called irregular for an operator
T : X — X on a Banach space X provided that sup, || T"x|| = co and
inf, || T"x|| = 0. In particular, the line S := {Ax : X € K} is a scrambled
set for T.

o (Prajitura, 2009) An operator T : X — X is completely irregular if every
x € X \ {0} is irregular. In particular, the full space S = X is a scrambled
set for T. )

(Bermtidez, Bonilla, Martinez-Giménez, Peris, 2011)

An operator T : X — X on a Banach space is Li-Yorke chaotic if and only if it
admits irregular vectors.
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Li-Yorke and distributional chaos
Definition

An operator T on a Fréchet space X with a fundamental sequence of
seminorms (||-||«)x, and a vector x € X, we say that x is a distributionally
irregular vector for T if there are subsets A, B C N with

dens(A) = dens(B) = 1, such that lim,ca T"x = 0, and there exists m € N
such that lim,eg|| T"x||m = 0.
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Li-Yorke and distributional chaos

An operator T on a Fréchet space X with a fundamental sequence of
seminorms (||-||«)x, and a vector x € X, we say that x is a distributionally
irregular vector for T if there are subsets A, B C N with

dens(A) = dens(B) = 1, such that lim,ca T"x = 0, and there exists m € N
such that lim,eg|| T"x||m = 0.

Definition

Let X be a Fréchet space with a fundamental system of seminorms
|- ll« (k€N). Let T € B(X). We say that T satisfies the distributional
chaotic criterion (DCC) if there exist sequences (Xm)m, (Ym)m C X such that:

(a) there exists a subset A C N with dens(A) = 1 such that lim,ca T"xm» = 0
for all m;

(b) ym € span{xk : k € N}, lim ym, =0 and there exist € > 0 and a sequence
m— 00

of positive integers {Np}m with
card{j < N : d(T/ym,0) > e} > Nm(l — m~!) for all m € N.
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Li-Yorke and distributional chaos

Theorem

Let X be a Fréchet space with a fundamental system || - [|[x (k € N) of
seminorms. Let T € B(X). The following statements are equivalent:

(i) T satisfies (DCC);

(i) T has a distributionally irregular vector;
(iii) T is distributionally chaotic;
(iv) T admits a distributionally chaotic pair.

Theorem

Let T be a linear and continuous operator on X. If

@ there exists a dense set Xy such that lim T"x =0, for all x € Xo and
n— oo

@ one of the following conditions is true:
a) X is a Fréchet space and there exists a eigenvalue A with || > 1.
b) X is a Banach space and > ﬁ < oo (in particular if r(T) > 1).
c) X is a Hilbert space and ) W < oo(in particular if o,(T) N T has
positive Lebesgue measure).

then T is densely distributionally chaotic.
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Li-Yorke and distributional chaos

Example

Let Q be a simply connected domain and ¢ is an automorphism on Q and let
Cy : H(2) — H(2) be the composition operator Cy(f)(z) = f(¢(2)). Then
the following statements are equivalent:

(i) Cy is chaotic;
(i) Cy is mixing;
(iii) Cy is hypercyclic;
(iv) (¢)")n is a run-away sequence;

(v) & has no a fixed point;

(vi) Cy is densely distributionally chaotic.
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