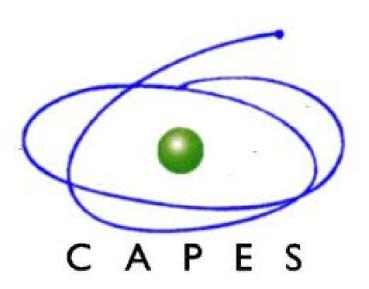


Integrable systems on \mathbb{S}^3

Regilene Oliveira¹

ICMC - Universidade de São Paulo CP 668, São Carlos, SP, Brasil regilene@icmc.usp.br



1. Introduction and objectives

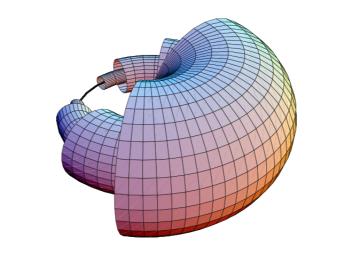
The aim of this poster is to present

- a generalization of the conclusions of Fomenko and others to non Hamiltonian systems defined on \mathbb{S}^3 .
- an invariant for this kind of flow.
- the study of the periodic orbits, as done by Wada.
- obstructions of integrability from the type of knot of the periodic orbits in the systems studied here.

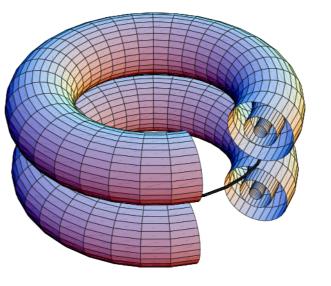
2. Knots and Morse-Bott functions

Let M be a manifold

Moreover, when s is a center singularity $H_a(f, s)$ is a closed regular neighborhood of this singularity.



Definition 1. Denote by $\Sigma(f)$ the manifold M minus the level sets of saddle singularities σ . We call basin of σ in $\Sigma(f)$ to each connected component of $\Sigma(f)$.



7. Vector fields completely integrable

Definition 3. We will say that a vector field $v(M^n)$ is completely integrable if it has two independent first integrals f_1, f_2 . We will denote by (v, f_1, f_2) the vector field and its integrals.

We will assume:

I. f_i are MB functions.

II. f_i is a MB function on each regular level set $I_a(f_j), j \neq i$.

Proposition 5. The round handle decomposition of S^3 defined by f_1 is topologically equivalent to the round handle decomposition defined by f_2 .

- A knot in M is the image of an immersion $h : S^1 \to M$. Two knots are equivalent if there exists a preserving orientation homeomorphism $H : M \to M$ that conjugates the immersions of the knots, i. e. $H(h_1(S^1)) = h_2(S^1)$. A link is a set of non intersecting knots.
- A function f : M → R is called Morse-Bott function (MB function from now on) if its singular points are organized as non degenerate smooth critical or singular manifolds. Here a critical manifold of f is called degenerate if the Hessian of f is non degenerate on normal planes of this submanifold.
- The level sets of f are $I_a(f) = \{p \in M : f(p) = a\}.$
- If p is a critical point then f(p) = a is called a **critical** value and the corresponding level set is called a singular level.
- The level sets of a MB function on M define a singular foliation $\mathcal{F}(\mathcal{M})$ on M.
- If dim M = n, each leaf that has codimension less than n-1 or it is not a submanifold of M is called a singularity of the foliation $\mathcal{F}(\mathcal{M})$.
- Let *a* be a critical value of *f*. The set of critical points of *f* contained in $I_a(f)$ is denoted by $S_a(f)$. Moreover, the singular set of a MB function *f* does not need to coincide with the singularities of the foliation.

In the next theorem F_p denotes a disk with $p \ge 1$ holes and D^2 , an open unity disk.

Theorem 1. Let σ be a saddle periodic orbit contained in $S_a(f)$ without connection by means of a separatrix with another saddle periodic orbit, then $H_a(f, \sigma)$ is homeomorphic to:

1. $F_2 \times S^1$, if $H_a(f, \sigma)$ is orientable.

2. $D^2 \times S^1 - \Psi$, where Ψ is a regular neighborhood of a (2,1)-cable of $\{0\} \times S^1$, if $H_a(f,\sigma)$ is not orientable.

5. Links of singular periodic orbits

As handles are attached in an essential way and the topological characterization is the same that in the Hamiltonian system we conclude the following

Proposition 3. The link of singular periodic orbits of a non singular MB integrable vector field on \mathbb{S}^3 without saddle

Definition 4. • $\mathcal{L}(f_1, f_2)$ consists of $\mathcal{L}(f)$ and a periodic orbit of the basin of each ς^1 .

• The graph link of (v, f_1, f_2) consists of the set of $R_G(f)$ and $\mathcal{L}(f_1, f_2)$ and a map from $R_G(f)$ to $\mathcal{L}(f_1, f_2)$ sending each vertex to a periodic orbit of $\mathcal{L}(f_i), i = 1$ or i = 2 and an edge of $R_G(f)$ to an orbit of $\mathcal{L}(f_1, f_2) - \mathcal{L}(f_i)$.

The graph link is an invariant of orbital equivalent systems.

7.1 Example

One easy example of MB completely integrable system defined over the sphere $x_1^2+x_2^2+x_3^2+x_4^2=1$: :

 $\frac{dx_1}{dt} = x_2 x_3 (3x_2^2 + x_1^2(1 + x_4^2)),$ $\frac{dx_2}{dt} = -x_1 x_3 (x_1^2 - x_2^2(x_4^2 - 3)),$ $\frac{dx_3}{dt} = -x_1 x_2 x_4^2 (2 + x_1^2 + x_2^2 - x_2^4),$ $\frac{dx_4}{dt} = -x_3 x_2 x_3 x_4 (x_4^2 - 2).$ (1)

• Denote by $Sing(\mathcal{F}(S^3))$ the set of singularities of $\mathcal{F}(S^3)$. They are classified as saddle singularities $Sad(\mathcal{F})$ and center singularities $Cen(\mathcal{F})$ according to the index of the normal planes.

3. Integrable vector fields

Denote by

- $\psi_{MB}(M)$ the set of all C^r -vector field v that admits a MB function f as a first integral ($r \ge 2$).
- $\psi_{NMB}(M^n)$ the set of all non singular vector fields in $\psi_{MB}(M)$ without saddle connections.

4. Level sets and handles to non singular vector fields

Let (v, f) be a pair where v is a vector field and f a particular first integral of v.

Proposition 1. Let (v, f) be a pair where $v \in \psi_{NMB}(M)$ and a a regular value of f. Then each connected component of $I_a(f)$ is homeomorphic to a 2-dimensional torus. connections is made by applying operations IV, V and VI to a Hopf link.

These are the operations defined by Wada in [5] Let $\mathcal{L}(f)$ be this link.

Proposition 4. $\mathcal{L}(f)$ has the following properties:

1. Let s be a periodic orbit of a vector field on \mathbb{S}^3 with a first integral of Morse-Bott type, then it is an generalized torus knot.

2. It is a not splitting link.

3. If the periodic saddle orbits are orientable then $|\sigma^1|+2 \leq |\varsigma^1| \leq |2\sigma^1|+2$, where σ^1 and ς^1 denote the number of saddle points of dimension 1.

The proof of this proposition follows similar arguments to those in Fomenko [4].

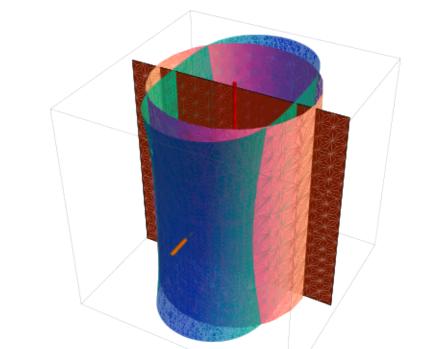
6. Graph link

Let *M* be a manifold and $f: M \to R$ a continuous function. The space obtained from *M* by contracting each connected component of the level sets to a point is called **Reeb graph** of $f, R_G(f)$.

This graph is said to be a **directed graph** if the value of f at the origin of an edge is lower than the value of the ebd the edge.

It has as MB first integrals

- $f_1 = x_1^2 + x_2^2(1 + x_4^2),$ $f_2 = (x_1^2 + x_2^2)(2 - x_4^2).$ (2)
- Each first integrals has the circle $x_1 = 0, x_2 = 0$ as a singular center.
- The singularity of (f_1, f_2) contains also the 2-sphere $x_4 = 0$. This sphere intersects a torus around ς_1^1 , $(x_1^2 + x_2^2)(2 x_4)^2 = \epsilon$ in the two parallels $x_3^2 = 1 \frac{\varepsilon}{2}$. This is where regular tori $I_a(f_1)$ and $I_b(f_2)$ for some values of a and b are tangent.
- There are also periodic orbits as intersection of invariant tori. As $B(\varsigma_1)$ is all S^3 minus the center one dimensional circles, the dynamics of the system consists in trivially unknotted periodic orbits around the centers.



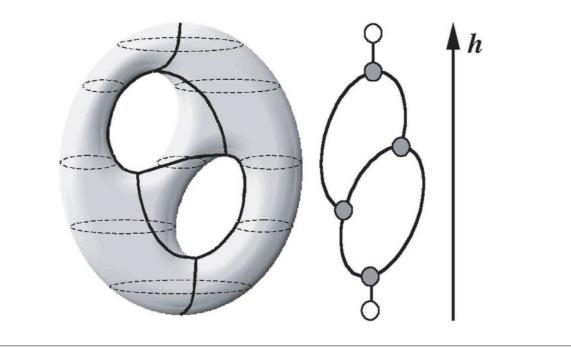
If a is a critical value then

Proposition 2. Let f be a MB first integral for a vector field $v \in \mathbb{S}^3$, then $S_a(f)$ is union of circles or torus and it is an invariant set of v.

Let *s* be a critical connected manifold of $S_a(f)$, $H_a(f, s)$ denotes a connected component of $I_{[a-\epsilon,a+\epsilon]}(f)$.

We can think $H_a(f, s)$ as a closed neighborhood of the invariant manifold.

As f is constant on each connected component of the border of $H_a(f, s)$ we can decompose M using these handles.



Definition 2. The graph link of the pair (v, f), where $v \in \psi_{NMB}(M)$, consists of the set $R_G(f)$, the link $\mathcal{L}(f)$ and a map from $R_G(f)$ to $\mathcal{L}(f)$ sending the vertex corresponding to the critical value a to the periodic orbits on $I_a(f)$.

References
[1] Bott, R. Nondegenerate critical manifolds. Annals of Mathematics 60 n. 2 (1954) 248-261.

[2] Casasayas, J., J. Martínez Alfaro and A. Nunes. Knots and Links in Integrable Hamiltonian Systems. J. of Knot Theory and its Ramifications 7 n. 2 (1998) 123-153.

[3] Fomenko, A.T. Integrability and Non integrability in Geometry and Mechanics. Kluwer Academic Publishers (1988).

[4] Fomenko, A.T. and T.Z. Nguyen. Topological Classification on Integrable Non Degenerate Hamiltonians on the Isoenergy Three-dimensional Sphere. Advances in Soviet Math. 6 (1991) 267-297.

[5] Wada, M. Closed orbits of non-singular Morse-Smale flows on S³. J. Math. Soc. Japan **41**

(1989) 405-413.

Joint work with José Martínez Alfaro, Universitat de Valéncia, Spain.