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1. Introduction and Main Results

General piecewise linear systems have attracted great attention in

the past years specially due to their simplicity. Landmarks in this

area are the works of Andronov et al. in [1] and Chua [2]. Here

we are interested in piecewise linear systems in the plane with two

zones, for short PLSPTZ, that is piecewise linear systems in the

plane where the two linearity regions are separated by a straight

line L.

An example of a continuous PLSPTZ with one limit cycle can be

found in [1]. Lum and Chua in [7] presented other examples of

continuous PLSPTZ with one limit cycle and stated the following

conjecture: a continuous PLSPTZ has at most one limit cycle.

In [3] was given an affirmative answer to the Lum and Chua conjec-

ture. So, in order to obtain a PLSPTZ with two or more limit cycles

it is necessary that the system be discontinuous at points on the line

L. In [4] Han and Zhang studied discontinuous PLSPTZ with two

limit cycles and stated the following conjecture: a discontinuous

PLSPTZ has at most two limit cycles.

The first example of a discontinuous PLSPTZ with three limit cy-

cles was proposed by Huan and Yang in [5] giving a negative answer

to the conjecture of Han and Zhang. A rigorous proof of the exis-

tence of three limit cycles in the example presented in [5] was given

by Llibre and Ponce in [6].

In this poster we consider the following one–parameter family of

discontinuous piecewise linear system with two zones [5, 6]

X ′ =


A−X, if x < ε,

A+X, if x ≥ ε,

(1)

where ε is a real parameter, the matrices A− and A+ are

A− =


4

3
−20

3

377

750
−26

15

 , A+ =


19

50
−1

1
19

50

 (2)

and the prime denotes derivative with respect to the independent

variable t (time). System (1) with ε = 1 was studied in [5, 6]. Our

main results are the following.

Theorem 1. The one–parameter family of piecewise linear systems

with two zones (1) has:

(a) One unstable focus at the origin and no limit cycle when ε < 0.

(b) One unstable focus at the origin and no limit cycle when ε = 0.

(c) One stable focus at the origin and three limit cycles surrounding

the origin for each ε > 0. One limit cycle is stable and the other

two are unstable. See Figure 1. So system (1) presents a triple

Hopf bifurcation at ε = 0.
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Figure 1: Three limit cycles of system (1) for ε > 0. In this figure ε = 1/2.

2. Proof of Theorem 1

Define Lε = {(x, y) ∈ R2 : x = ε} for each ε ∈ R. For

any initial condition (ε, y0) ∈ Lε, the solutions of X ′ = A+X

will be denoted by X+(t, ε, y0) = (x+(t, ε, y0), y+(t, ε, y0)) while

the solutions of X ′ = A−X will be denoted by X−(t, ε, y0) =

(x−(t, ε, y0), y−(t, ε, y0)), where

x+(t, ε, y0) = e
19t
50 (ε cos(t)− y0 sin(t)),

y+(t, ε, y0) = e
19t
50 (y0 cos(t) + ε sin(t)),

(3)

x−(t, ε, y0) =
1

15
e−

t
5(15ε cos(t) + (23ε− 100y0) sin(t)),

y−(t, ε, y0) =
1

750
e−

t
5(750y0 cos(t) + (377ε− 1150y0) sin(t)).

(4)

The origin is a real unstable focus for X ′ = A+X and a virtual

stable focus for X ′ = A−X when ε < 0 and it is a virtual unstable

focus for X ′ = A+X and a real stable focus for X ′ = A+X when

ε > 0.

2.1 System (1) for ε = 0

Proposition 1. Consider the one–parameter family of piecewise

linear systems with two zones (1). Assume that ε = 0. Then the

origin is an unstable focus.

Proof. Consider an initial condition (0, y0) ∈ L0 with y0 6= 0. By

(3) and (4) we have

X+(t, 0, y0) =
(
−y0 e

19t
50 sin(t), y0 e

19t
50 cos(t)

)
and

X−(t, 0, y0) =

(
−20

3
y0 e

− t
5 sin(t),−20

3
y0 e

− t
5

(
23

100
sin(t)− 3

20
cos(t)

))
.

Consider Σ0 = {(0, y) ∈ L0 : y > 0} and define the

Poincaré map (first return map) P : Σ0 → Σ0 by P (0, y0) =

X+(π,X−(π, 0, y0)). From the above expressions of X+(t, 0, y0)

and X−(t, 0, y0) it follows that P (0, y0) =
(

0, y0 e
9π
50

)
. As

y0 e
9π
50 > y0 the Poincaré map is an expansive map.

2.2 System (1) for ε > 0

Consider ε > 0 fixed and define H+
ε = {(x, y) ∈ R2 : x > ε} and

H−ε = {(x, y) ∈ R2 : x < ε}. The flow of (1) enters to the half

plane H+
ε through the set E+

ε = {(ε, y) ∈ Lε : y < ε/5} and exits

it through the set E−ε = {(ε, y) ∈ Lε : y > 19ε/50}. The segment

Sε = {(ε, y) ∈ Lε : ε/5 < y < 19ε/50} is the sliding segment on

Lε. Thus if system (1) for ε > 0 has non–sliding periodic orbits

these must surround the segment Sε.

Suppose that for y0 > 19ε/50 there is a periodic orbit in the phase

portrait of (1), denoted here by Γ. If t− > 0 is the smallest time

such that X−(t−, ε, y0) ∈ Lε and t+ > 0 is the smallest time such

that X+(−t+, ε, y0) ∈ Lε, then the point (ε, y0) of the set Γ∩Lε
is associated with a solution of the form (t+, t−, y0, ε) of

F1(t+, t−, y0, ε) = x−(t−, ε, y0)− ε = 0,

F2(t+, t−, y0, ε) = x+(−t+, ε, y0)− ε = 0,

F3(t+, t−, y0, ε) = y−(t−, ε, y0)− y+(−t+, ε, y0) = 0,

(5)

where y−(t−, ε, y0) = y+(−t+, ε, y0) < ε/5.

According to [6], for ε = 1, we have that(
t+1 , t

−
1 , y

0
1

)
= (1.48, 3.45, 1.68) , (6)(

t+2 , t
−
2 , y

0
2

)
= (0.85, 3.78, 0.96) , (7)(

t+3 , t
−
3 , y

0
3

)
= (0.39, 4.46, 0.61) , (8)

are solutions of (5) and, therefore, are points of intersection of three

periodic orbits with the set L1. In other words, from (5), (6), (7)

and (8) we have Fi(t
+
k , t
−
k , y

0
k, 1) = 0, i = 1, 2, 3, k = 1, 2, 3.

We will prove that, for each ε > 0 fixed, system (5) has at least

three solutions of the form

p1(ε) = (t+1 , t
−
1 , y

0
1ε, ε), p2(ε) = (t+2 , t

−
2 , y

0
2ε, ε), p3(ε) = (t+3 , t

−
3 , y

0
3ε, ε), (9)

where t+k , t−k and y0
k, for k = 1, 2, 3, are given by (6), (7) and (8).

In other words, the values of y0 associated with periodic solutions

vary linearly with ε > 0 and so for every ε > 0 there are three

isolated periodic orbits in the phase portrait of (1).

Proposition 2. Consider (1) with ε > 0. Then there are at least

three limit cycles surrounding the origin.

Proof. The proof is immediate since for each i = 1, 2, 3, the func-

tion Fi in (5) is positively homogeneous in the variable ε, that is,

for each i = 1, 2, 3, Fi(pk(ε)) = εFi(pk(1)) = 0, k = 1, 2, 3, for

all ε > 0.

2.3 System (1) for ε < 0

Consider ε < 0 fixed and define H+
ε = {(x, y) ∈ R2 : x > ε}

and H−ε = {(x, y) ∈ R2 : x < ε}. The flow of (1) enters to the

half plane H+
ε through the set E+

ε = {(ε, y) ∈ Lε : y < 19ε/50}
and exits it through the set E−ε = {(ε, y) ∈ Lε : y > ε/5}. The

segment Sε = {(ε, y) ∈ Lε : 19ε/50 < y < ε/5} is the sliding

segment on Lε. Figure 2 illustrates Sε and the nullclines of system

(1) in the whole plane: continuous lines for the vector field defined

by A− and dashed ones for the vector field defined by A+.

Figure 2: Nullclines of system (1) in the whole plane.

Let Q0 = (ε, 19ε/50) be an endpoint of the sliding segment Sε.
Let Q2 be the first intersection of the solution X+(t, Q0) with

Lε for t > 0. Denote by Q1 the intersection of Lε with the line

y = −50x/19, that is Q1 = (ε,−50ε/19). See Figure 3.

Figure 3: Points Q0, Q1 and Q2.

Lemma 1. Let Q1 = (ε,−50ε/19) and Q2 = X+(t0, Q0) =

(ε, y+(t0, Q0)) ∈ Lε, t0 > 0. Then y+(t0, Q0) > −50ε/19. See

Figure 3.

Consider a point P0 = (ε, y0) ∈ E+
ε (see Figure 3). Denote by

τ1 > 0 the smallest time such that

P1 = X−(−τ1, P0) =
(
x−(−τ1, P0), y−(−τ1, P0)

)
∈ Lε

and by τ2 > 0 the smallest time such that

P2 = X+(τ2, P0) =
(
x+(τ2, P0), y+(τ2, P0)

)
∈ Lε.

In analogous way, denote by τ3 > 0 the smallest time such that

P3 = X−(−τ3, P0) =
(
x−(−τ3, P0), y

−(−τ3, P0)
)
∈ {x = 0, y > 0}

and by τ4 > 0 the smallest time such that

P4 = X+(τ4, P0) =
(
x+(τ4, P0), y+(τ4, P0)

)
∈ {x = 0, y > 0}

(see Figure 3). In order to study the nonexistence of non–sliding

limit cycles of system (1) when ε < 0 we will prove that the function

d(ε, y0) = y+(τ2, P0)− y−(−τ1, P0) (10)

is positive.

From Lemma 1 it is sufficient to prove that the function

d̃(ε, y0) = y+(τ4, P0)− y−(−τ3, P0) (11)

is positive, for all ε < 0. In fact,

d(ε, y0) = y+(τ2, P0)− y−(−τ1, P0) > y+(τ4, P0)− y−(−τ3, P0) = d̃(ε, y0),

since y+(τ2, P0) > y+(τ4, P0) and y−(−τ3, P0) > y−(−τ1, P0).

See Figures 2 and 3. We have the following proposition.

Proposition 3. The function d̃(ε, y0) is positive for all ε < 0.
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