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PERIODIC ORBITS OF THE FOURTH–ORDER

NON–AUTONOMOUS DIFFERENTIAL EQUATION

u′′′′ + qu′′ + pu = εF (t, u, u′, u′′, u′′′)

JAUME LLIBRE1 AND AMAR MAKHLOUF 2

Abstract. We provide sufficient conditions for the existence of periodic so-
lutions of the fourth–order differential equation

u′′′′ + qu′′ + pu = εF (t, u, u′, u′′, u′′′),

where q, p and ε are real parameters, ε is small and F is a nonlinear non-
autonomous periodic function with respect to t. Moreover we provide some

applications.

1. Introduction and statement of the main results

The goal of this paper is to study the periodic solutions of the fourth–order
non-autonomous differential equation

(1) u′′′′ + qu′′ + pu = εF (t, u, u′, u′′, u′′′),

where q, p and ε are real parameters, ε is small and F is a nonlinear function. The
prime denotes derivative with respect to an independent variable t.

In general to obtain analytically periodic solutions of a differential system is a
very difficult task, usually impossible. Here using the averaging theory we reduce
this difficult problem for the differential equations (1) to find the zeros of a non-
linear system of two or four equations. We must say that the averaging theory
for finding periodic solutions in general does not provide all the periodic solutions
of the system. For more information and details about the averaging theory see
section 2 and the references quoted there.

Equations (1) appear in many places. For instance, Champneys [5] analyzes a
class of equations (1) looking mainly for homoclinic orbits.

When F = ±u3, the equation (1) is called the Extended Fischer–Kolmogorov
equation or the Swift-Hohenberg equation see [3, 7], and in other places, see for
instance the book [14] and [1, 4].

Some results on the periodic orbits for extended Fisher–Kolmogorov and Swift–
Hohenberg equations of the form

(2) u′′′′ + qu′′ + α(t)u = f(t, u, u′, u′′),

with α and f functions, has been studied in [4] and in the references quoted there.

The differential equation (1) when F does not depend of t with p < 0 has been
studied in [11] taking p = −1 after a rescaling, and with p > 0 it has been studied
in [8].
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Our main result on the periodic solutions of the fourth-order non–autonomous
differential equation (1) with p < 0 is the following one.

Theorem 1. Assume that p < 0 in the differential equation (1). Let

F1(X0, Y0) =
α

2π

∫ 2π

α

0

cos (αt)F (t, A(t), B(t), C(t), D(t))dt, and

F2(X0, Y0) = − α

2π

∫ 2π

α

0

sin (αt)F (t, A(t), B(t), C(t), D(t))dt,

be with

√√
q2 − 4p+ q

2
= α,

√√
q2 − 4p− q

2
= β, (or equivalently p = −α2β2 <

0, q = α2 − β2) with respectively, α and β, positive numbers, and

A(t) = −Y0 cos(αt) +X0 sin(αt)

α(α2 + β2)
,

B(t) =
−X0 cos(αt) + Y0 sin(αt)

α2 + β2
,

C(t) =
α(Y0 cos(αt) +X0 sin(αt))

α2 + β2
,

D(t) =
α2(X0 cos(αt)− Y0 sin(αt))

α2 + β2
.

If the function F is
2π

α
-periodic with respect to the variable t, then for every

(X0
∗, Y0

∗) solution of the system

(3) Fk(X0, Y0) = 0, k = 1, 2,

satisfying

(4) det

(
∂(F1,F2)

∂(X0, Y0)

∣∣∣∣
(X0,Y0)=(X0

∗,Y0
∗)

)
̸= 0,

the differential equation (1) has a periodic solution u(t, ε) tending to the solution
u0(t) given by

−Y ∗
0 cos(αt) +X∗

0 sin(αt)

α(α2 + β2)

of u′′′′+ qu′′+ pu = 0 when ε → 0. Note that this solution is periodic of period
2π

α
.

Theorem 1 is proved in section 3. Its proof is based in the averaging theory for
computing periodic orbits, see section 2.

Our main result on the periodic solutions of the fourth-order non–autonomous
differential equation (1) with p > 0 is the following one.
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Theorem 2. Assume that p > 0, q > 0 and q2−4p > 0 in the differential equation
(1). Let

F1(X0, Y0, Z0, V0) =
1

2πk

∫ 2πk

0

cos
(m
n
t
)
F (t, A(t), B(t), C(t), D(t))dt,

F2(X0, Y0, Z0, V0) = − 1

2πk

∫ 2πk

0

sin
(m
n
t
)
F (t, A(t), B(t), C(t), D(t))dt,

F3(X0, Y0, Z0, V0) =
1

2πk

∫ 2πk

0

cos
(r
s
t
)
F (t, A(t), B(t), C(t), D(t))dt, and

F4(X0, Y0, Z0, V0) = − 1

2πk

∫ 2πk

0

sin
(r
s
t
)
F (t, A(t), B(t), C(t), D(t))dt,

be with

√
q +

√
q2 − 4p

2
=
m

n
,

√
q −

√
q2 − 4p

2
=
r

s
, (or equivalently p =

m2r2

n2s2
, q =

m2

n2
+

r2

s2
) where m,n, r and s are positive integers, (m,n) = (r, s) = 1, k =

l.c.m(n, s) (least common multiple), and

A(t) = K
(m
n

[
V0 cos

(r
s
t
)
+ Z0 sin

(r
s
t
)]

− r

s

[
Y0 cos

(m
n
t
)
+X0 sin

(m
n
t
)])

,

B(t) = L
(
Z0 cos

(r
s
t
)
−X0 cos

(m
n
t
)
− V0 sin

(r
s
t
)
+ Y0 sin

(m
n
t
))

,

C(t) = L
(
−r

s

[
V0 cos

(r
s
t
)
+ Z0 sin

(r
s
t
)]

+
m

n

[
Y0 cos

(m
n
t
)
+X0 sin

(m
n
t
)])

,

D(t) = L

(
−r2

s2
Z0 cos

(r
s
t
)
+

m2

n2
X0 cos

(m
n
t
)
+

r2

s2
V0 sin

(r
s
t
)
− m2

n2
Y0 sin

(m
n
t
))

,

where

K =
n3s3

mr(m2s2 − n2r2)
, L =

n2s2

m2s2 − n2r2
.

If the function F is 2πk-periodic with respect to the variable t, then for every
(X0

∗, Y0
∗, Z0

∗, V0
∗) solution of the system

(5) Fk(X0, Y0, Z0, V0) = 0, k = 1, . . . , 4,

satisfying

(6) det

(
∂(F1,F2,F3,F4)

∂(X0, Y0, Z0, V0)

∣∣∣∣
(X0,Y0,Z0,V0)=(X0

∗,Y0
∗,Z0

∗,V0
∗)

)
̸= 0,

the differential equation (1) has a periodic solution u(t, ε) tending to the solution
u0(t) given by

K
[m
n

[
V

∗

0 cos
(r
s
t
)
+ Z∗

0 sin
(r
s
t
)]

− r

s

[
Y ∗
0 cos

(m
n
t
)
+X∗

0 sin
(m
n
t
)]]

of u′′′′ + qu′′ + pu = 0 when ε → 0. Note that this solution is periodic of period
2πk.

Theorem 2 is proved in section 4. Its proof is done using a different averaging
result than in the proof of Theorem 1. For other applications of the averaging
theory see for instance [9] and [?].

Two applications of Theorem 1 and one application of Theorem 2 for studying
the periodic solutions of equation (1) are given in the following three corollaries.
They are proved in section 5.
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Corollary 3. If F (t, u, u′, u′′, u′′′) = sin t + uu′ − u′ + (u′)3, then the differential
equation (1) with p = −1 and q = 0 has one periodic solution u1(t, ε) tending to
the periodic solution u1(t) given by

u1(t) = −1

3

(
2 · 22/3

3
√
9−

√
65

+ 3

√
2
(
9−

√
65
))

cos t

of u′′′′ − u = 0 when ε −→ 0.

Corollary 4. If F (t, u, u′, u′′, u′′′) =
(
1− u2

)
sin 2t, then the differential equation

(1) with p = −4 and q = 3 has four periodic solutions uk(t, ε) for k = 1, 2, 3, 4,
tending to the periodic solutions

u1(t) = 2 cos(2t), u2(t) = −2 cos(2t),

u3(t) =
2√
3
sin(2t), u4(t) = − 2√

3
sin(2t),

of u′′′′ + 3u′′ − 4u = 0 when ε −→ 0.

Corollary 5. If F (t, u, u′, u′′, u′′′) = (1− u) sin t, then the differential equation (1)

with p =
1

36
and q =

13

36
has one periodic solution u1(t, ε) , tending to the periodic

solution

u1(t) =
36

5

(
3V ∗

0 cos

(
t

3

)
+ 3Z∗

0 sin

(
t

3

)
− 2X∗

0 sin

(
t

2

))
,

of u′′′′ +
1

36
u′′ +

13

36
u = 0 when ε −→ 0, where

X∗
0 = − 9625

108(52992
√
3−29645π)

,

Z∗
0 =

1925(−17253286281216+9678017986560
√
3π−5428725209600π2+338348019625

√
3π3)

864(52992
√
3−29645π)(−8424456192+3141895680

√
3π−878826025π2)

,

V ∗
0 =

1925(−325582848+121918720
√
3π−34239975π2)

2592(−8424456192+3141895680
√
3π−878826025π2)

.

2. Basic results on averaging theory

In this section we present the basic results from the averaging theory that we
shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions from differ-
ential systems of the form

(7) ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε ̸= 0 sufficiently small. Here the functions F0, F1 : R×Ω → Rn and
F2 : R×Ω× (−ε0, ε0) → Rn are C2 functions, T–periodic in the first variable, and
Ω is an open subset of Rn. The main assumption is that the unperturbed system

(8) ẋ = F0(t,x),

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(t, z, ε) be the solution of the system (8) such that x(0, z, ε) = z. We write
the linearization of the unperturbed system along a periodic solution x(t, z, 0) as

(9) ẏ = DxF0(t,x(t, z, 0))y.
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In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (9), and by ξ : Rk × Rn−k → Rk the projection of Rn onto its first k
coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

We assume that there exists a k–dimensional submanifold Z of Ω filled with
T–periodic solutions of (8). Then an answer to the problem of bifurcation of T–
periodic solutions from the periodic solutions contained in Z for system (7) is given
in the following result.

Theorem 6. Let W be an open and bounded subset of Rk, and let β : Cl(W ) →
Rn−k be a C2 function. We assume that

(i) Z = {zα = (α, β(α)) , α ∈ Cl(W )} ⊂ Ω and that for each zα ∈ Z the
solution x(t, zα) of (8) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (9) such that the
matrix M−1

zα
(0)−M−1

zα
(T ) has in the upper right corner the k× (n−k) zero

matrix, and in the lower right corner a (n − k) × (n − k) matrix ∆α with
det(∆α) ̸= 0.

We consider the function F : Cl(W ) → Rk

(10) F(α) = ξ

(
1

T

∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt

)
.

If there exists a ∈ W with F(a) = 0 and det ((dF/dα) (a)) ̸= 0, then there is a
T–periodic solution φ(t, ε) of system (7) such that φ(0, ε) → za as ε → 0.

Theorem 6 goes back to Malkin [13] and Roseau [15], for a shorter proof see [2].

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for each
z ∈ Cl(V ), x(t, z, 0) is T–periodic, where x(t, z, 0) denotes the solution of the
unperturbed system (8) with x(0, z, 0) = z. The set Cl(V ) is isochronous for the
system (7); i.e. it is a set formed only by periodic orbits, all of them having the
same period. Then, an answer to the problem of the bifurcation of T–periodic
solutions from the periodic solutions x(t, z, 0) contained in Cl(V ) is given in the
following result.

Theorem 7. [Perturbations of an isochronous set] We assume that there
exists an open and bounded set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ),
the solution x(t, z) is T–periodic, then we consider the function F : Cl(V ) → Rn

(11) F(z) =

∫ T

0

M−1
z (t, z)F1(t,x(t, z))dt.

If there exists a ∈ V with F(a) = 0 and det ((dF/dz) (a)) ̸= 0, then there exists a
T–periodic solution φ(t, ε) of system (7) such that φ(0, ε) → a as ε → 0.

For a proof of Theorem 7 see Corollary 1 of [2].

3. Proof of Theorem 1

Introducing the variables (x, y, z, v) = (u, u′, u′′, u′′′) we write the fourth–order
differential equation (1) as a first–order differential system defined in an open subset
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Ω of R4. Thus we have the differential system

(12)

x′ = y,
y′ = z,
z′ = v,
v′ = −px− qz + εF (t, x, y, z, v).

Of course as before the dot denotes derivative with respect to the independent
variable t. System (12) with ε = 0 will be called the unperturbed system, otherwise
we have the perturbed system. The unperturbed system has a unique singular point,
the origin. Since p < 0 the origin has one pair of imaginary eigenvalues and two
real eigenvalues, more precisely the eigenvalues are

±

√√
q2 − 4p+ q

2
i = ±αi, ±

√√
q2 − 4p− q

2
= ±β.

We shall write system (12) in such a way that the linear part at the origin will be
in its real Jordan normal form. Then, doing the change of variables (x, y, z, v) →
(X,Y, Z, V ) given by


X
Y
Z
V

 =



0 −β2 0 1

p

α
0 α 0

p

β
α2 −β 1

− p

β
α2 β 1




x
y
z
v

 ,

the differential system (12) becomes

(13)

X ′ = −αY + εF (t, a(t), b(t), c(t), d(t)),

Y ′ = αX ,

Z ′ = −β Z + εF (t, a(t), b(t), c(t), d(t)),

V ′ = β V + εF (t, a(t), b(t), c(t), d(t)),

with

a(t) =
−1

4αβ2 (α2 + β2)

[
(α2 − β2)(−2Y − V + Z) + (α2 + β2))(2Y − V + Z)

]
,

b(t) =
1

2 (α2 + β2)

[
V − 2X + Z

]
,

c(t) =
1

2 (α2 + β2)

[
2αY + β(V − Z)

]
,

d(t) =
1

4 (α2 + β2)

[
(β2 − α2)(V − 2X + Z) + (α2 + β2)(V + 2X + Z)

]
.

Note that the linear part of the differential system (13) at the origin is in its real
normal form of Jordan.
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We shall apply Theorem 6 to the differential system (13). We note that system
(13) can be written as system (7) taking

x =


X
Y
Z
V

 , t = t, F0(t,x) =


−αY

αX

−β Z

β V

 ,

and

F1(t,x) =


F (t, a(t), b(t), c(t), d(t))

0

F (t, a(t), b(t), c(t), d(t))

F (t, a(t), b(t), c(t), d(t))

 .

We shall study the periodic solutions of system (8) in our case, i.e. the periodic
solutions of system (13) with ε = 0. These periodic solutions are

X(t)
Y (t)
Z(t)
V (t)

 =


X0 cos(αt)− Y0 sin(αt)
Y0 cos(αt) +X0 sin(αt)

0
0

 .

This set of periodic orbits has dimension two, all having the same period
2π

α
.

To look for the periodic solutions of our equation (13) we must calculate the zeros

z = (X0, Y0) of the system F(z) = 0, where F(z) is given by (10). The fundamental
matrix M(t) of the differential system (13) with ε = 0 along any periodic solution
is

M (t) = Mz(t) =


cos(αt) − sin(αt) 0 0

sin(αt) cos(αt) 0 0

0 0 exp(−βt) 0

0 0 0 exp(βt)

 .

The inverse matrix of M (t) is

MI (t) =


cos(αt) sin(αt) 0 0

− sin(αt) cos(αt) 0 0

0 0 exp(βt) 0

0 0 0 exp(−βt)

 .
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It verifies

MI(0)−MI
(2π
α

)
=



0 0 0 0

0 0 0 0

0 0 1− exp
(
2π

β

α

)
0

0 0 0 1− exp
(
− 2π

β

α

)


.

Consequently all the assumptions of Theorem 6 are satisfied. Therefore we must
study the zeros in W of the system F(z) = 0 of two equations with two unknowns,
where W and F are given in the statement of Theorem 6. More precisely, we have
F(z) = (F1(X0, Y0),F2(X0, Y0)) where

F1(X0, Y0) =
α

2π

∫ 2π

α

0

cos (αt)F (t, A(t), B(t), C(t), D(t))dt,

F2(X0, Y0) = − α

2π

∫ 2π

α

0

sin (αt)F (t, A(t), B(t), C(t), D(t))dt,

with A(t), B(t), C(t) and D(t) as in the statement of Theorem 1.
The zeros (X∗

0 , Y
∗
0 ) of system

(14)

(
F1 (X0, Y0)
F2 (X0, Y0))

)
=

(
0
0

)
with respect to the variables X0 and Y0 provide periodic orbits of system (13) with
ε ̸= 0 sufficiently small if they are simple , i.e. if

(15) det

(
∂(F1,F2)

∂(X0, Y0)

∣∣∣∣
(X0,Y0)=(X∗

0 ,Y
∗
0 )

)
̸= 0.

Going back through the change of variable, for every simple zero (X∗
0 , Y

∗
0 ) of system

(14), we obtain a
2π

α
periodic solution u(t) of the differential equation (1) for ε ̸= 0

sufficiently small such that u(t) tends to the periodic solution

u0(t) = −Y ∗
0 cos(αt) +X∗

0 sin(αt)

α(α2 + β2)

of u′′′′ + qu′′ + pu = 0 when ε → 0. Note that this solution is periodic of period
2π

α
. This completes the proof of Theorem 1.

4. Proof of Theorem 2

As in the proof of Theorem 1 the differential equation (1) can be written as the
differential system (12). The unperturbed system has a unique singular point, the
origin. Since p > 0 and q2−4p > 0 the origin has two pairs of imaginary eigenvalues

±

√
q +

√
q2 − 4p

2
i = ±m

n
i, ±

√
q −

√
q2 − 4p

2
i = ±r

s
i.
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We shall write system (12) in such a way that the linear part at the origin will be
in its real Jordan normal form. Then, doing the change of variables (x, y, z, v) →
(X,Y, Z, V ) given by


X
Y
Z
V

 =


0

r2

s2
0 1

pn

m
0

m

n
0

0
m2

n2
0 1

ps

r
0

r

s
0




x
y
z
v

 ,

the differential system (12) becomes

(16)

X ′ = −m

m
Y + εF (t, a(t), b(t), c(t), d(t)) ,

Y ′ =
m

m
X,

Z ′ = −r

s
V + εF (t, a(t), b(t), c(t), d(t))

V ′ =
r

s
Z,

with

a(t) =
n3s3

mr(m2s2 − n2r2)

[m
n
V − r

s
Y
]
,

b(t) =
n2s2

m2s2 − n2r2
[Z −X] ,

c(t) =
n2s2

m2s2 − n2r2

[m
n
Y − r

s
V
]
,

d(t) =
n2s2

m2s2 − n2r2

[
m2

n2
X − r2

s2
Z

]
.

Note that the linear part of the differential system (16) at the origin is in its real
Jordan normal form.

We shall apply Theorem 7 to the differential system (16). We note that system
(16) can be written as system (7) taking

x =


X
Y
Z
V

 , t = t, F0(t,x) =



−m

n
Y

m

n
X

−r

s
V

r

s
Z


,

and

F1(t, ,x) =


F (t, a(t), b(t), c(t), d(t))

0

F (t, a(t), b(t), c(t), d(t))

0

 .
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We shall study the periodic solutions of system (8) in our case, i.e. the periodic
solutions of system (16) with ε = 0. These periodic solutions are


X(t)
Y (t)
Z(t)
V (t)

 =



X0 cos
(m
n
t
)
− Y0 sin

(m
n
t
)

Y0 cos
(m
n
t
)
+X0 sin

(m
n
t
)

Z0 cos
(r
s
t
)
− V0 sin

(r
s
t
)

V0 cos
(r
s
t
)
+ Z0 sin

(r
s
t
)


.

This set of periodic orbits has dimension four, all having the same period 2πk, where
k is defined in the statement of Theorem 2. To look for the periodic solutions of

our equation (1) we must calculate the zeros z = (X0, Y0, Z0, V0) of the system
F(z) = 0, where F(z) is given by (11). The fundamental matrix M(t) of the
differential system (16) with ε = 0 along any periodic solution is

M (t) = Mz(t) =



cos
(m
n
t
)

− sin
(m
n
t
)

0 0

sin
(m
n
t
)

cos
(m
n
t
)

0 0

0 0 cos
(r
s
t
)

− sin
(r
s

)
0 0 sin

(r
s
t
)

cos
(r
s

)


.

Now computing the function F(z) given in (11) we got that the system F(z) = 0
can be written as

(17)


F1 (X0, Y0, Z0, V0)
F2 (X0, Y0, Z0, V0)
F3 (X0, Y0, Z0, V0)
F4 (X0, Y0, Z0, V0)

 =


0
0
0
0

 ,

where

F1(X0, Y0, Z0, V0) =
1

2πk

∫ 2πk

0

cos
(m
n
t
)
F (t, A(t), B(t), C(t), D(t))dt,

F2(X0, Y0, Z0, V0) = − 1

2πk

∫ 2πk

0

sin
(m
n
t
)
F (t, A(t), B(t), C(t), D(t))dt,

F3(X0, Y0, Z0, V0) =
1

2πk

∫ 2πk

0

cos
(r
s
t
)
F (t, A(t), B(t), C(t), D(t))dt,

F4(X0, Y0, Z0, V0) = − 1

2πk

∫ 2πk

0

sin
(r
s
t
)
F (t, A(t), B(t), C(t), D(t))dt,

with A(t), B(t), C(t) and D(t) as in the statement of Theorem 2.
The zeros (X∗

0 , Y
∗
0 , Z

∗
0 , V

∗
0 ) of system (4) with respect to the variables X0, Y0,

Z0 and V0 provide periodic orbits of system (16) with ε ̸= 0 sufficiently small if
they are simple, i.e. if

(18) det

(
∂(F1,F2,F3,F4)

∂(X0, Y0, Z0, V0)

∣∣∣∣
(X0,Y0,Z0,V0)=(X0

∗,Y0
∗,Z0

∗,V0
∗)

)
̸= 0.
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Going back through the change of variables, for every simple zero (X∗
0 , Y

∗
0 , Z

∗
0 , V

∗
0
)

of system (4), we obtain a 2πk periodic solution u(t) of the differential equation (1)
for ε ̸= 0 sufficiently small such that u(t) tends to the periodic solution

K
[m
n

[
V

∗

0 cos
(r
s
t
)
+ Z∗

0 sin
(r
s
t
)]

− r

s

[
Y ∗
0 cos

(m
n
t
)
+X∗

0 sin
(m
n
t
)]]

of u′′′′ + qu′′ + pu = 0 when ε → 0, where K is defined in the statement of
Theorem 2 . Note that this solution is periodic of period 2πk. This completes the
proof of Theorem 2.

5. Proof of Corollaries 3, 4 and 5

Proof of Corollary 3. We have the equation

(19) u′′′′ − u = ε(sin t+ uu′ − u′ + (u′)3),

which corresponds to the case p = −1, q = 0 and F (t, x, y, z, v) = sin(t)+xy−y+y3.
We obtain α = β = 1. The functions F1 and F2 of Theorem 1 are

F1(X0, Y0) = − 1

64
X0[3(X

2
0 + Y 2

0 )− 16],

F2(X0, Y0) = − 1

64
[3Y 3

0 + (3X2
0 − 16)Y0 + 32].

System F1 = F2 = 0 has only one real solution

(X∗
0 , Y

∗
0 ) =

(
0,−2

3

(
2 · 22/3

3
√
9−

√
65

+ 3

√
2
(
9−

√
65
)))

. Since the Jacobian

det

(
∂(F1,F2)

∂(X0, Y0)

∣∣∣∣
(X0,Y0)=(0,−2,98452)

)
= 0, 167966...

By Theorem 1 equation (19) has the periodic solution of the statement of the
corollary. �

Proof of Corollary 4. We have the equation

u′′′′ + 3u′′ − 4u = ε
(
1− u2

)
sin 2t,

which corresponds to the case p = −4, q = 3 and F (t, x, y, z, v) = (1 − x2) sin 2t.
We obtain α = 2 and β = 1. The functions F1 and F2 of Theorem 1 are

F1(X0, Y0) = − 1

400
X0Y0,

F2(X0, Y0) =
3

800
X2

0 +
1

800
Y 2
0 − 1

2
.

System F1 = F2 = 0 has the four solutions (X∗
0 , Y

∗
0 ) given by

(0, 20) , (0,−20) ,

(
20√
3
, 0

)
,

(
− 20√

3
, 0

)
.

Since the jacobian

det

(
∂(F1,F2)

∂(X0, Y0)

∣∣∣∣
(X0,Y0)=(X∗

0 ,Y
∗
0 )

)
for these four solutions (X∗

0 , Y
∗
0 ) is −

1

400
, − 1

400
,

1

400
,

1

400
, respectively we obtain
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using Theorem 1 the four solutions given in the statement of the corollary. �

Proof of Corollary 5. We have the equation

(20) u′′′′ +
1

36
u′′ +

13

36
u = ε (1− u) sin t,

which corresponds to the case p =
1

36
, q =

13

36
and F (t, x, y, z, v) = (1 − x) sin t.

We obtain m = 1, n = 2, r = 1, s = 3. The functions Fk = Fk(X0, Y0, Z0, V0) for
k = 1, 2, 3, 4 of Theorem 2 are

F1 = − 8

1925

(
10395πX0 − 33534

√
3Z0 − 33534V0 + 3850

)
,

F2 = − 216

1925

(
385πY0 + 648Z0 − 648

√
3V0

)
,

F3 = − 81

15400

(
−9216

√
3X0 − 17664Y0 + 11088

√
3Z0 + 33264V0 − 1925

)
,

F4 =
27

15400

(
27648X0 − 52992

√
3Y0 − 99792Z0 + 33264

√
3V0 + 1925

√
3
)
.

System F1 = F2 = F3 = F4 = 0 has only one real solution (X∗
0 , 0, Z

∗
0 , V

∗
0 ) where

X∗
0 , Z

∗
0 and V ∗

0 are given in the statement of the corollary. Since the Jacobian

det

(
∂(F1,F2,F3,F4)

∂(X0, Y0, Z0, V0)

∣∣∣∣
(X0,Y0,Z0,V0)=(X∗

0 ,0,Z
∗
0 ,V

∗
0 )

)
= 0, 0779343...,

by Theorem 2 equation (20) has the periodic solution of the statement of the corol-
lary. �
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