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Introduction
Due to the encouraging increase in their applications, control theory
[3], design of electric circuits [1], neurobiology [2] piecewise linear
differential systems were studied early from the point of view of qua-
litative theory of ordinary differential equations. Nowadays, a lot of
papers are being devoted to these differential systems.

In this work we study the existence of limit cycles for the class of
continuous piecewise linear differential systems

x
′ = X(x), (1)

where x = (x, y) and X is a continuous piecewise linear v.f. We will
consider the following situation: we have two parallel straight lines L−

and L+ symmetric with respect to the origin dividing the phase plane
in three closed regions: R−, Ro and R+ with (0, 0) ∈ Ro and the
regions R− and R+ have as boundary the straight lines L− and L+

respectively. We will denote by X− the vector field X restrict to R−,
by Xo the vector field X restricted to Ro and by X+ the vector field
X restrict to R+.We suppose that the restriction of the vector field to
each one of these zones are linear systems with constant coefficients
that are glued continuously at the common boundary.

In short, system (1) can be written as

x
′ =







A−x +B− x ∈ R−,
Aox + Bo x ∈ Ro,
A+x +B+ x ∈ R+,

(2)

where Ai ∈ M2(R), i ∈ {−, o,+}, Bi ∈ R2, i ∈ {−, o,+} and

x
′ =

dx

dt
with t the time. In what follows we denote by ti = trace(Ai)

and by di = det(ai) for i ∈ {−, o,+}.
We say that the vector field X has a real equilibrium x∗ in Ri with
i ∈ {−, o,+} if x∗ is an equilibrium of Xi and x∗ ∈ Ri. In opposite
we will say that X has a virtual equilibrium x∗ in Ri if x

∗ ∈ Rc
i .

We suppose the following assumptions:

(H1)Xo has a real equilibrium in the interior of the region Ro of focus
type.

(H2) The others equilibria (real or virtual) of X− and X+ are a center
and a focus with different stability with respect to the focus of Xo.

Our main result is the following.
Theorem A: Assume that system (2) satisfies assumptions (H1) and
(H2). Then system (2) has a unique limit cycle, which is hyperbolic .

1. Normal Form

In this section we will write system (2) in a convenient normal form
where the number of parameters are reduced.

Lemma 1: Suppose that system (2) is such that det(Ao) > 0. Then
there exists a linear change of coordinates that writes system (2) into
the form ẋ = X(x), with L− = L−1 = {x = −1}, L+ = L1 = {x =
1}, R− = {(x, y) ∈ R2; x ≤ −1}, Ro = {(x, y) ∈ R2; −1 ≤ x ≤
1}, R+ = {(x, y) ∈ R2; x ≥ 1} and

X(x) =







A−x + B− x ∈ R−,
Aox + Bo x ∈ Ro,
A+x + B+ x ∈ R+,

(3)

where A− =

(

a11 −1
1− b2 + d2 a1

)

, B− =

(

a11
d2

)

, Ao =
(

0 −1
1 a1

)

, Bo =

(

0
b2

)

, A+ =

(

c11 −1
1 + b2 − f2 a1

)

and B+ =
(

−c11
f2

)

. The dot denotes derivative with respect to a new time s.

For our purpose we will define a first return map that involves all the
vector fields X−, Xo and X+ and the transversal sections L− and
L+. For this we need the next Lemma.

Lemma 2: In the coordinates given by Lemma 1 there is a unique
contact point of system (3) with L− and a unique contact point of (3)
with L+. These points are respectively p− = (−1, 0) and p+ = (1, 0).
Moreover under the assumptions (H1) and (H2) the equilibria of X−

and X+ are virtual.

2. Poincaré Return Map

Under the assumptions (H1) and (H2) we have that system (3) has a
unique real equilibrium in Ro and, by Lemma 2, the two other equilibria
are virtual.

In order to study the existence of limit cycles for system (3) under the
assumptions H1 and H2 we will define a Poincaré return map defined
on L−.

Let p− be the contact point of ẋ = A−x + B− with L−. Note that
p− divides L− into two segments LO

− and LI
− where in LO

− the vector

field points toward the region R− while in LI
− the vector field points

toward the region Ro. In fact we have LO
− = {(−1, y); y ≥ 0} and

LI
− = {(−1, y); y ≤ 0}.

We can define a Poincaré map Π− : LO
− → LI

− by Π−(p) = q as been
the first return map in forward time of the flow of ẋ = A−x+B− to
L−. Observe that Π−(p−) = p−.

Note that we can see the mapping Π− in a different way. Given,
p ∈ LO

− and q ∈ LI
− there exist unique a ≥ 0 and b ≥ 0 such that

p = p−−aṗ− where ṗ− = X−(p−) = (0, b2−1), and q = p−+bṗ−.
So the mapping Π− induces a mapping π− given by π−(a) = b.

Proposition 3: Consider the vector field Xi in Ri with i ∈ {−,+},
with a virtual center or focus equilibrium and such that ti ≥ 0 (resp.
ti < 0). Let πi be the map associated to the Poincaré map Πi : Li →
Li defined by the flow of the linear system ẋ = Aix +Bi.

(a) If ti > 0 (resp. ti < 0) then the maps πi satisfy that πi :
[0,∞) → [0,∞), πi(0) = 0, lim

a→∞
πi(a) = +∞ and πi(a) > a

(resp. πi(a) < a) in (0,∞).

(a.1) If a ∈ (0,∞) then (πi)
′(a) =

a

πi(a)
e2γiτi. Moreover (πi)

′(a) > 1

(resp. 0 < (πi)
′(a) < 1) and lim

a→0
(πi)

′(a) = 1.

(a.2) If a ∈ (0,∞) then (πi)
′′(a) > 0 (resp. (πi)

′′(a) < 0).

(a.3) The straight line b = eγiπa − ti(1 + eγiπ)/di (resp. b =
eγiπa− ti(1 + e−γiπ)/di) in the plane (a, b) is an asymptote of

the graph of πi when a tends to +∞ where γi = ti/
√

4di − t2i .

So lim
a→∞

(π1)
′(a) = eγiπ.

(b) If ti = 0 then πi is the identity in [0,∞).

Let p− and p+ be the contact point of ẋ = Aox+Bo with L− and L+

respectively. We can define a Poincaré map Πo : D
∗
o ⊂ L− → L+ by

Πo(q) = r being the map from points in Do to points in L+ defined
by the flow of ẋ = Aox + Bo in forward time, where D∗

o is a subset
of L− where the mapping Πo is well defined.

As before we can see the mapping Πo in a different way. Given,
q ∈ D∗

o and r ∈ L+ there exist unique b ≥ 0 and c ≥ 0 such that
q = p−+ bṗ− and r = p+− cṗ+, where ṗ+ = X+(p+) = (0, b2+1).
So the mapping Πo induces a mapping πo given by πo(b) = c. As
before we will consider the map πo instead of Πo.
In the same way we can define a first return map Π̄o : D̄

∗
o ⊂ L+ → L−

and the respective π̄o.
The next propositions state the qualitative behavior of these maps.

Proposition 4: Consider the vector field Xo in Ro with a real focus
equilibrium and such that to > 0 (resp. to < 0). Let πo be the map
associated to the Poincaré map Πo : D

∗
o ⊂ L− → L+ defined by the

flow of the linear system ẋ = Aox+Bo from the straight line L− to
the straight line L+.

(a) If 0 < b2 < 1 (resp. −1 < b2 < 0) then the map πo satisfies
that πo : [b∗,∞) → [c∗,∞), b∗, c∗ ≥ 0 with πo(b

∗) = c∗ and

lim
b→∞

πo(b) = +∞. Moreover b∗ = 0 if and only if eγoπ ≥
1 + b2
1− b2

and c∗ = 0 if and only if eγoπ ≤
1 + b2
1− b2

.

(a.1) If b ∈ (b∗,∞) then π′o(b) =

(

1− b2
1 + b2

)2

e2γoτo
b

πo(b)
, with τo → 0

when b → ∞ and lim
b→∞

π′o(b) =

(

1− b2
1 + b2

)2

.

(b) If −1 < b2 ≤ 0 (resp. 0 ≤ b2 < 1) then b∗ = 0 (resp. c∗ = 0)
and πo satisfies πo : [0,∞) → [c∗,∞), c∗ > 0 with πo(0) = c∗

(resp. πo : [b∗,∞) → [0,∞), b∗ > 0 with πo(b
∗) = 0) and

lim
b→∞

πo(b) = +∞.

(b.1) π′o(b) satisfy the same conditions described in (a.1).

Proposition 5: Consider the vector field Xo in Ro with a real focus
equilibrium and such that to > 0 (resp. to < 0). Let π̄o be the map
associated to the Poincaré map Π̄o : D̄

∗
o ⊂ L+ → L− defined by the

flow of Xo from straight line L+ to the straight line L−.

(a) If −1 < b2 < 0 (resp. 0 ≤ b2 < 1) then π̄o satisfies that
π̄o : [d∗,∞) → [a∗,∞), d∗, a∗ ≥ 0 with π̄o(d

∗) = a∗ and

lim
d→∞

π̄o(d) = +∞. Moreover d∗ = 0 if and only if eγoπ ≥
1− b2
1 + b2

and a∗ = 0 if and only if eγoπ ≤
1− b2
1 + b2

.

(a.1) If d ∈ (d∗,∞) then π̄′o(d) =

(

1 + b2
1− b2

)2

e2γoτ̄o
d

π̄o(d)
with τ̄o → 0

when d → ∞ and lim
d→0

π̄′o(d) = ∞ and lim
d→∞

π̄′o(d) =

(

1 + b2
1− b2

)2

.

(b) If 0 ≤ b2 < 1 (resp. −1 < b2 < 0) then d ∈ (0,∞) and π̄o
satisfies π̄o : [0,∞) → [a∗,∞), a∗ > 0 with π̄o(0) = a∗ and
lim
d→∞

π̄o(d) = +∞.

(b.1) π̄′o(d) satisfy the same conditions described in (a.1).

3. Limit Cycles having a Focus in
Ro

In what follows without loss of generality we suppose that the center of
hypothesis (H2) is in R−. The next two Propositions state Theorem
A.

Proposition 6: Assume that system (3) satisfies assumptions (H1)
and (H2). Suppose that the real equilibrium point in Ro is between
L− and Lo where Lo is a line parallel to L+ through the origin. Then
there exists a unique limit cycle of (3), which is hyperbolic. Moreover
this limit cycle visits the three regions R−, Ro and R+. It is a repeller
if to < 0, and an attractor if to > 0.

Proof: Suppose that we have a center in X−, and a focus in Xo and
in X+. By the hypotheses we have 0 ≤ b2 < 1.

Using the previous notation we have γi =
αi
βi
, i ∈ {−, o,+}. So

γ− = 0 and γo, γ+ 6= 0. The domain of the first return map Π defined
by Π = π̄o ◦ π+ ◦ πo ◦ π− is an interval of R+ that depends on the
domain of the mapping πo and π̄o stated in Propositions 4 and 5.

Suppose that γo > 0 and γ+ < 0. In this case D̄o(π̄o) = [0,∞) and
Do(πo) = [b∗,∞) where b∗ ≥ 0 and πo(b

∗) = 0 (see figure below).
This implies that D(Π) = [a∗,∞) where a∗ = b∗. Moreover we have
Π : [a∗,∞) → [a∗∗,∞) with a∗∗ > a∗ and Π(a∗) = a∗∗

A A A

B

C C

C

D E F

where A = −b2, B = p− − a∗X−(p−), C = p− −
a∗∗X−(p−), D := π(a∗) = a∗∗, E, F := π(0) = a∗∗.
Define the displacement function h(a) = Π(a)− a.
Note that finding a fixed point of Π is equivalent to find zeroes of the
function h.
In a∗ we have h(a∗) = Π(a∗) − a∗ > 0. Supposing that h admits
a zero and that as is the smallest zero we must have h′(as) ≤ 0, or
equivalently Π′(as) ≤ 1. But from the definition of Π we can write

Π′(a) = π̄′o(d)π
′
+(c)π

′
o(b)π

′
−(a)

where b = π−(a) = a, c = πo(b) and d = π+(c).

From Propositions 3-6 it follows that
Π′(a) =

(

1 + b2
1− b2

)2
d

π̄o(d)
e2γoτ̄o

c

π+(c)
e2γ+τ+

(

1− b2
1 + b2

)2
b

πo(b)
e2γoτo

=
a

Π(a)
e2(γo(τo+τ̄o)+γ+τ+),

(4)

with τ+ ∈ (0, π) increasing with a, and τ̄o + τo ∈ (0, 2π − τ∗)
decreasing with a. So γo(τo + τ̄o) + γ+τ+ is a decreasing function in
a and γo(τo + τ̄o) + γ+τ+ → γ+π < 0 when a → ∞. Hence from
(4) and from the fact that Π′(as) ≤ 1 we must have

γo(τos + τ̄os) + γ+τ+s ≤ 0.

Now supposing that Π admits a second fixed point ar from the mo-
notonicity of the function γo(τo + τ̄o) + γ+τ+ we must have

γo(τos + τ̄os) + γ+τ+s=0 and γo(τor + τ̄or) + γ+τ+r<0.

As as and ar are fixed point of Π this implies from (4) that Π′(as) = 1
and Π′(ar) < 1. So in this case, for a ∈ (as, ar) we obtain Π(a) > a.
Now from (4) it follows that Π′(a) < 1 for a ∈ (as, ar) and from the
Mean Value Theorem we have

Π(a)− Π(as) = Π′(ā)(a− as) < a− as

that implies that Π(a) < a. This is a contradiction and so we have at
most a fixed point as for Π and

γo(τos + τ̄os) + γ+τ+s < 0. (5)

On the other hand since

h′(a) = Π′(a)− 1 and lim
a→∞

h′(a) = e2γ+π − 1 < 0,

it follows by the Mean Value Theorem that lim
a→∞

h(a) = −∞, and

this shows that h admits a zero. Moreover this zero is equivalent to a
fixed point of the first return map Π and this fixed point is a hyperbolic
attractor because from (5) we have Π′(as) < 1.

Now suppose that γo < 0 and γ+ > 0. In this case we can use the
same idea of the previous case and we obtain a unique limit cycle that
is a hyperbolic repeller.

Now from Proposition 15 of [4] it is not possible to have a limit cycle
that visit only the regions Ro and R+ otherwise we would have two
hyperbolic attractor limit cycle containing the same equilibrium point
what is not possible. This finish the prove of the result.

Proposition 7: Assume that system (3) satisfies assumptions (H1)
and (H2). Suppose that the real equilibrium point in Ro is between
Lo and L+. Then there exists a unique limit cycle of (3), which is
hyperbolic. This limit cycle visits the three regions R−, Ro and R+ if
D(Π) = [0,∞) and Π(0) > 0 and visits only the regions Ro and R+

otherwise.
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