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Patterns 

f : X  X continuous, P a finite f-invariant 
subset of X ( f(P)=P ).  

The pattern of P is a combinatorial object 
that contains all the information about (at 
least): 

• The relative positions of the points of P 
inside the space X 

• The way these positions are permuted 
under the action of f 

 



Entropy of a pattern 

f : X  X continuous, P a finite f-invariant 

subset of X. Let q be the pattern of P. 

 

The entropy of q, h(q), is the infimum of the 

topological entropies of all self-maps of X 

exhibiting an invariant set with pattern q: 

h(q) = inf { h(g) s.t. g : X  X exhibits q }  



Interval patterns 

• When X is an interval, the pattern of P can 

be identified with a permutation in the 
natural way: q = (3,1,4,2)  

 

 

 



Interval patterns – II 

The entropy of an interval pattern q can be 

easily computed using some algebraic 

tools: 

 

Piecewise monotone (or “connect-the-dots”) 

map  Markov matrix  h(q) = logarithm 

of its spectral radius 



Other 1-dimensional spaces 
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Tree patterns 

Some terminology: 

• A model is a triplet (T,P,f), where T is a 
tree, f: T  T is continuous and P is a 
finite f-invariant subset of T. 

• Two points x,y of P are consecutive if (x,y) 
contains no points of P. 

• Any maximal subset of P consisting only of 
pairwise consecutive points is a discrete 
component. 



Tree patterns - II 



Tree patterns – III 

In this context (tree maps), a pattern is an 

abstract object which can be identified with 

the conjugacy class of all models with a 

fixed distribution of discrete components 

and images of points in the distinguished 

finite invariant set. 



Tree patterns -IV 



Tree patterns – V 

• Given a tree pattern q (which is an 

equivalence class of models), one can 

construct a monotone representative 

(T,P,f) with properties very similar to those 

of the “connect-the-dots” interval maps: 

 

Monotone model  Markov matrix  h(q) = 
logarithm of its spectral radius 

 



Tree patterns – VI 

Theorem: Given any tree pattern q, there 

exists a model (called canonical model) 

(T,P,f) such that f exhibits the pattern q 

over P and f is monotone on any interval 

[a,b] defined by a pair a,b of consecutive 

points of P. Moreover, h(f) = h(q). 
[ Example: blackboard ]  

The canonical model is essentially unique. 



Tree patterns – VII 

Given a pattern q and its canonical model 

(T,P,f), the f-image of each vertex of T is 

uniquely determined and is either a vertex 

or belongs to P. Thus, P U V(T) is an 

invariant set. [ Example: blackboard ]  

• So, P U V(T) defines a Markov partition (a 

set of maximal closed intervals whose 

interiors do not intersect P U V(T)).  

 



Tree patterns – VIII 

• Canonical model  Markov partition of k 

intervals  k x k Markov matrix M     

h(q) =  logarithm of its spectral radius 

 

• M is a binary matrix: Mij =1 if the i-th 

interval f-covers the j-th one, 0 otherwise. 

 

 

 



A remark: collapsing intervals 

• Let (T,P,f) be the canonical model of a 

pattern. It may happen that, for some 

Markov interval [a,b], f(a)=f(b), implying 

that the f-image of [a,b] collapses to one 

point: [a,b] is called a collapsing interval.     
 

[ Example: blackboard ] 



Reducibility  

• Reducible systems are those such that the 

space can be decomposed in connected 

pieces with pairwise disjoint interiors which 

are permuted by the map. 

• In this situation the behaviour of the 

original map can be related with the 

dynamics of an iterate of the map on the 

reduced pieces. 



Aim  

• We want to clarify in full the notion of 

reducibility (irreducibility) for periodic tree 

patterns. Next we provide precise 

definitions of these notions and study their 

dynamical implications at a topological 

level.  

• We also relate these features to the 

algebraic properties of the Markov matrix.  



Some Algebra  

Recall that a nonnegative matrix M is called 

reducible if, for a permutation matrix A, 

 

 

 

where M11 and M22 are square matrices. 

Otherwise M is called irreducible.  



Some Algebra- II  

• An irreducible matrix M is called primitive if 

all powers Mn are irreducible for n ≥ 2. 

Otherwise M is called imprimitive. 

 

• It is well known (Perron-Frobenius) that an 

irreducible matrix M is primitive if and only 

if there exists n ≥ 1 such that all the entries 

of Mn are positive. 



Block structures 

• Let T be a tree. For any X ⊂ T, the convex 

hull ⟨X⟩ of X is the smallest connected 

subset of T containing X. 

• Let (T,P,f) be the canonical model of an n-

cyclic pattern. The pattern is said to have 

a p-block structure if there is a partition P 

= P1 ∪ P2 ∪ . . . ∪ Pp with f(Pi) = Pi+1 and 

⟨Pi⟩ ∩ Pj = ∅ for any pair { i, j }. 

 

 

 

 



Block structures - II 

 

• If in addition ⟨Pi⟩ ∩ ⟨Pj⟩ = ∅ for any pair 

then the block structure is called 

separated. 

 

 

 

 



Block structures - III 

    {1,3,5,7,9,11,13,15} ∪  

    {2,4,6,8,10,12,14,16}  is a    

       (non separated) 2-block 

structure. 

 

 

{1,5,9,13} ∪ {2,6,10,14} ∪  

{3,7,11,15} ∪ {4,8,12,16} is a   

    (separated) 4-block structure.  

 



Some results 

Let q be a cyclic pattern and let M be its 

associated Markov matrix. 

• Theorem 1: M is reducible if and only if q 

has either separated block structures or 

collapsing intervals. 

• Theorem 2: M is primitive if and only if q  

has no block structures and no collapsing 

intervals. 



An example 

 

 

 

 

q has a unique block-structure, {1,3,5} ∪ 

{2,4,6}, which is not separated. By Theorem 

1, M is irreducible. Moreover, by Theorem 2, 

M is imprimitive.    



An example - II 

• This is in contrast with the interval case! 

For interval patterns, if the Markov matrix 

is irreducible, then it is primitive: 

 

• Theorem 3: Let q be a simplicial cyclic 

pattern and let M be its Markov matrix. If M 

is irreducible then M is primitive. 



The skeleton 

• When a cyclic pattern has a p-block 

structure one can construct its skeleton, 

which is a p-cyclic pattern obtained by 

collapsing each block to one point and 

defining a p-periodic map in the obvious 

way.  



The skeleton – an example 

 

 

 

 

• A sequence of skeletons:  

{1,7} ∪ {2,8} ∪ {3,9} ∪ {4,10} ∪ {5,11} ∪ {6,12}   

 {1,4} ∪ {2,5} ∪ {3,6}  

 trivial 3-cyclic pattern (one discrete component) 

  



Starry patterns 

• A cyclic pattern q is called k-starry if 

there is a sequence of patterns q1, 

q2, …, qk such that q1 = q, qi+1 is the 

skeleton of qi and qk is a trivial 

pattern (one discrete component). 

 

• An example: the 12-cyclic pattern in 

the previous slide.   



Starry patterns - II 

• Theorem 4: The entropy of a cyclic 

pattern q is zero if and only q is k-

starry for some k.  



Starry patterns - III 

Surprisingly, the following results 

were unknown even for the interval 

case: 

 

• Corollary 5: Let be an n-cyclic 

pattern q = [ T,P,f ]. Then, h(q)=0 if 

and only if all patterns [ T,P,fk ], with 

gcd(k,n)=1, have entropy zero. 

 



Starry patterns - IV 

• Corollary 6: Let be an n-cyclic 

pattern q = [ T,P,f ]. Then, h(q)>0 if 

and only if all patterns [ T,P,fk ], with 

gcd(k,n)=1, have positive entropy. 

 

 


