Topological and algebraic reducibility for patterns on trees

LI. Alsedà, D. Juher, F. Mañosas

Patterns

- $f: X \rightarrow X$ continuous, P a finite f-invariant subset of X (f(P)=P).
- The *pattern* of *P* is a combinatorial object that contains all the information about (at least):
- The relative positions of the points of P inside the space X
- The way these positions are permuted under the action of f

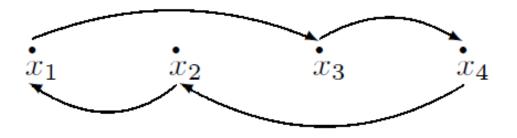
Entropy of a pattern

 $f: X \rightarrow X$ continuous, *P* a finite *f*-invariant subset of *X*. Let θ be the pattern of *P*.

The <u>entropy</u> of θ , $h(\theta)$, is the infimum of the topological entropies of all self-maps of X exhibiting an invariant set with pattern θ : $h(\theta) = \inf \{ h(g) \text{ s.t. } g : X \rightarrow X \text{ exhibits } \theta \}$

Interval patterns

 When X is an interval, the pattern of P can be identified with a permutation in the natural way: θ = (3,1,4,2)



Interval patterns – II

The entropy of an interval pattern θ can be easily computed using some algebraic tools:

Piecewise monotone (or "connect-the-dots") map \rightarrow Markov matrix $\rightarrow h(\theta) = \text{logarithm}$ of its spectral radius

Other 1-dimensional spaces

 Ll. Alsedà, J. Guaschi, J. Los, F. Mañosas, P. Mumbrú, *Canonical representatives for patterns* of tree maps, Topology 36 (1997).

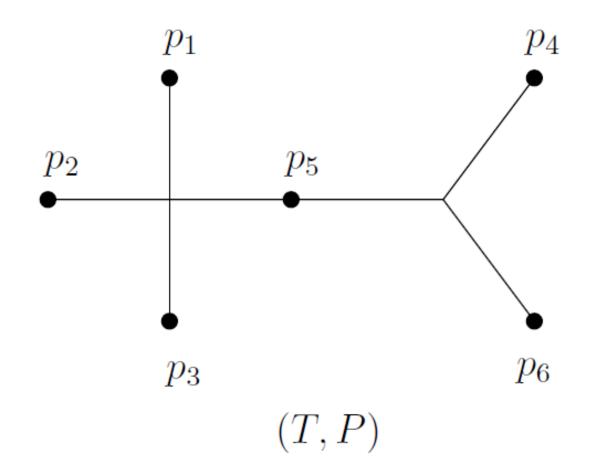
 LI. Alsedà, F. Gautero, J. Guaschi, J. Los, F. Mañosas, P. Mumbrú, *Patterns and minimal dynamics for graph maps*, Proc. London Math. Soc. (3) 91 (2005).

Tree patterns

Some terminology:

- A <u>model</u> is a triplet (T,P,f), where T is a tree, $f: T \rightarrow T$ is continuous and P is a finite f-invariant subset of T.
- Two points x, y of P are <u>consecutive</u> if (x,y) contains no points of P.
- Any maximal subset of P consisting only of pairwise consecutive points is a <u>discrete</u> <u>component</u>.

Tree patterns - II



Tree patterns – III

In this context (tree maps), a *pattern* is an abstract object which can be identified with the conjugacy class of all models with a fixed distribution of discrete components and images of points in the distinguished finite invariant set.

Tree patterns -IV

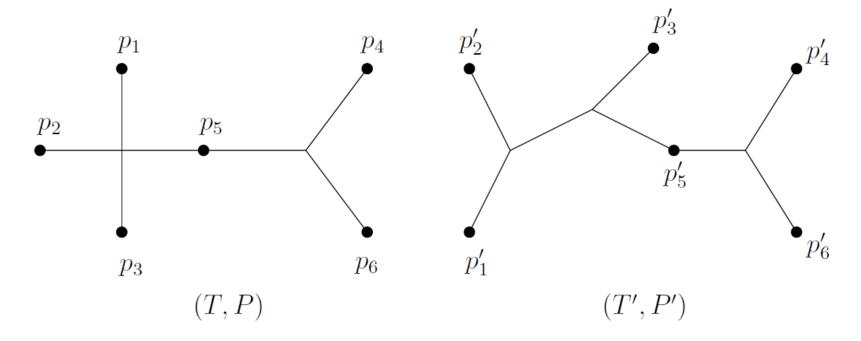


FIGURE 1. Set $P = \{p_i\}_{i=1}^6$ and $P' = \{p'_i\}_{i=1}^6$. If $f: T \longrightarrow T$ and $f': T' \longrightarrow T'$ are tree maps such that $f(p_i) = p_{i+1}$ and $f'(p'_i) = p'_{p+1}$ for $1 \le i \le 5$, $f(p_6) = p_1$ and $f'(p'_6) = p'_1$, then the models (T, P, f) and (T', P', f') represent the same cyclic pattern π .

Tree patterns – V

- Given a tree pattern θ (which is an equivalence class of models), one can construct a monotone representative (*T*,*P*,*f*) with properties very similar to those of the "connect-the-dots" interval maps:
- Monotone model \rightarrow Markov matrix $\rightarrow h(\theta) =$ logarithm of its spectral radius

Tree patterns – VI

Theorem: Given any tree pattern θ , there exists a model (called <u>canonical model</u>) (T,P,f) such that f exhibits the pattern θ over P and f is <u>monotone</u> on any interval [a,b] defined by a pair a,b of consecutive points of P. Moreover, $h(f) = h(\theta)$.

[Example: blackboard]

The canonical model is essentially unique.

Tree patterns – VII

Given a pattern θ and its canonical model *(T,P,f)*, the *f*-image of each vertex of *T* is uniquely determined and is either a vertex or belongs to *P*. Thus, *P* U V(*T*) is an invariant set. [Example: blackboard]

 So, P U V(T) defines a Markov partition (a set of maximal closed intervals whose interiors do not intersect P U V(T)).

Tree patterns – VIII

- Canonical model → Markov partition of k intervals → k x k Markov matrix M → h(θ) = logarithm of its spectral radius
- *M* is a binary matrix: *M*_{ij} =1 if the *i*-th interval *f*-covers the *j*-th one, 0 otherwise.

A remark: collapsing intervals

Let (T,P,f) be the canonical model of a pattern. It may happen that, for some Markov interval [a,b], f(a)=f(b), implying that the f-image of [a,b] collapses to one point: [a,b] is called a <u>collapsing interval</u>.

[Example: blackboard]

Reducibility

- Reducible systems are those such that the space can be decomposed in connected pieces with pairwise disjoint interiors which are permuted by the map.
- In this situation the behaviour of the original map can be related with the dynamics of an iterate of the map on the reduced pieces.

Aim

- We want to clarify in full the notion of reducibility (irreducibility) for periodic tree patterns. Next we provide precise definitions of these notions and study their dynamical implications at a topological level.
- We also relate these features to the algebraic properties of the Markov matrix.

Some Algebra

Recall that a nonnegative matrix M is called <u>reducible</u> if, for a permutation matrix A,

$$A^T M A = \begin{pmatrix} M_{11} & 0\\ M_{21} & M_{22} \end{pmatrix}$$

where M₁₁ and M₂₂ are square matrices. Otherwise M is called *irreducible*.

Some Algebra- II

 An irreducible matrix *M* is called <u>primitive</u> if all powers *Mⁿ* are irreducible for *n* ≥ 2.
 Otherwise *M* is called <u>imprimitive</u>.

It is well known (Perron-Frobenius) that an irreducible matrix *M* is primitive if and only if there exists *n* ≥ 1 such that all the entries of *Mⁿ* are positive.

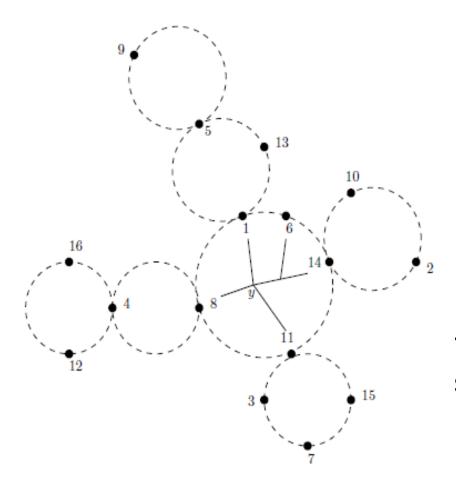
Block structures

- Let *T* be a tree. For any *X* ⊂ *T*, the convex hull (*X*) of *X* is the smallest connected subset of *T* containing *X*.
- Let (T,P,f) be the canonical model of an ncyclic pattern. The pattern is said to have a *p*-<u>block structure</u> if there is a partition *P* = *P*₁ \cup *P*₂ \cup . . . \cup *P*_p with *f*(*Pi*) = *Pi*+1 and $\langle Pi \rangle \cap P_j = \emptyset$ for any pair { *i*, *j* }.

Block structures - II

• If in addition $\langle Pi \rangle \cap \langle Pj \rangle = \emptyset$ for any pair then the block structure is called <u>separated</u>.

Block structures - III



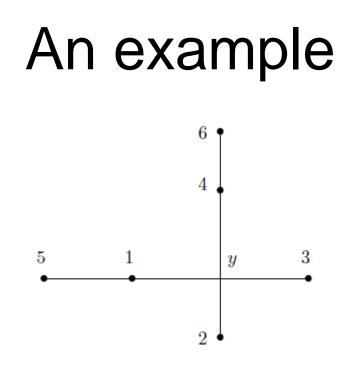
{1,3,5,7,9,11,13,15} ∪
{2,4,6,8,10,12,14,16} is a
 (non separated) 2-block
 structure.

 $\{1,5,9,13\} \cup \{2,6,10,14\} \cup \{3,7,11,15\} \cup \{4,8,12,16\}$ is a separated) 4-block structure.

Some results

Let θ be a cyclic pattern and let M be its associated Markov matrix.

- Theorem 1: M is reducible if and only if θ has either separated block structures or collapsing intervals.
- Theorem 2: M is primitive if and only if θ has no block structures and no collapsing intervals.



θ has a unique block-structure, {1,3,5} ∪
{2,4,6}, which is not separated. By Theorem
1, M is irreducible. Moreover, by Theorem 2,
M is imprimitive.

An example - II

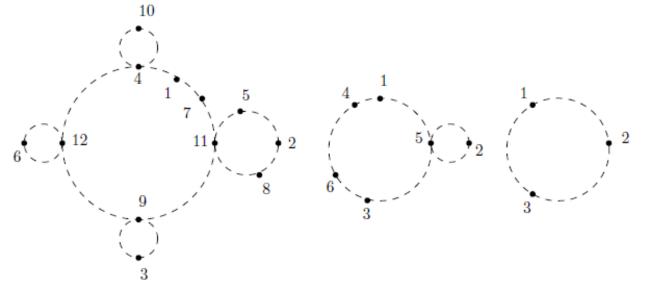
 This is in contrast with the interval case!
 For interval patterns, if the Markov matrix is irreducible, then it is primitive:

Theorem 3: Let θ be a <u>simplicial</u> cyclic pattern and let M be its Markov matrix. If M is irreducible then M is primitive.

The skeleton

 When a cyclic pattern has a *p*-block structure one can construct its <u>skeleton</u>, which is a *p*-cyclic pattern obtained by collapsing each block to one point and defining a *p*-periodic map in the obvious way.

The skeleton – an example



- A sequence of skeletons:
- $\{1,7\} \cup \{2,8\} \cup \{3,9\} \cup \{4,10\} \cup \{5,11\} \cup \{6,12\} \rightarrow$
- $\boldsymbol{\rightarrow} \{1,4\} \cup \{2,5\} \cup \{3,6\} \boldsymbol{\rightarrow}$
- → trivial 3-cyclic pattern (one discrete component)

Starry patterns

 A cyclic pattern θ is called <u>k-starry</u> if there is a sequence of patterns θ1, θ2, ..., θk such that θ1 = θ, θi+1 is the skeleton of θi and θk is a trivial pattern (one discrete component).

• An example: the 12-cyclic pattern in the previous slide.

Starry patterns - II

 Theorem 4: The entropy of a cyclic pattern θ is zero if and only θ is kstarry for some k.

Starry patterns - III

Surprisingly, the following results were unknown even for the interval case:

• **Corollary 5**: Let be an *n*-cyclic pattern $\theta = [T, P, f]$. Then, $h(\theta)=0$ if and only if all patterns $[T, P, f^k]$, with gcd(k, n)=1, have entropy zero.

Starry patterns - IV

• **Corollary 6**: Let be an *n*-cyclic pattern $\theta = [T, P, f]$. Then, $h(\theta) > 0$ if and only if all patterns $[T, P, f^k]$, with gcd(k, n)=1, have positive entropy.