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Patterns

f: X > X continuous, P a finite f-invariant
subset of X ( f(P)=P ).

The pattern of P is a combinatorial object
that contains all the information about (at
least):

* The relative positions of the points of P
Inside the space X

* The way these positions are permuted
under the action of f




Entropy of a pattern

f: X > X continuous, P a finite f-invariant
subset of X. Let 0 be the pattern of P.

The entropy of 0, h(0), Is the infimum of the

topological entropies of all self-maps of X
exhibiting an invariant set with pattern 0.
h(0) = Inf { h(g) s.t. g : X = X exhibits 0 }




Interval patterns

 When X Is an interval, the pattern of P can

be identified with a permutation in the
natural way: 6 - (3,1,4,2)
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The entropy of an interval pattern 6 can be
easily computed using some algebraic
tools:

Piecewise monotone (or “connect-the-dots™)
map > Markov matrix = h(6) = logarithm
of its spectral radius



Other 1-dimensional spaces

* LI|. Alseda, J. Guaschi, J. Los, F. Manosas, P.
Mumbrud, Canonical representatives for patterns
of tree maps, Topology 36 (1997).

 LI. Alseda, F. Gautero, J. Guaschi, J. Los, F.
Manosas, P. Mumbru, Patterns and minimal
dynamics for graph maps, Proc. London Math.
Soc. (3) 91 (2005).



Tree patterns

Some terminology:

A model is a triplet (T,P,f), where T Is a
tree, f: T = T Is continuous and P Is a
finite f-invariant subset of T.

* Two points x,y of P are consecutive if (x,y)
contains no points of P.

* Any maximal subset of P consisting only of
pairwise consecutive points is a discrete
component.
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In this context (tree maps), a pattern is an
abstract object which can be identified with
the conjugacy class of all models with a
fixed distribution of discrete components
and Images of points in the distinguished
finite Invariant set.
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FIGURE 1. Set P = {p;}¢_, and P' = {p{}6_,. If f: T — T and
f':T" — T" are tree maps such that f(p;) = p;yr1 and f'(p}) =
ppa1 for 1 <i <5, f(ps) = p1 and f'(pg) = pi, then the models
(T, P, f) and (T, P’, f") represent the same cyclic pattern .
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» Glven a tree pattern 6 (which is an
eguivalence class of models), one can
construct a monotone representative
(T,P,f) with properties very similar to those
of the “connect-the-dots” interval maps:

Monotone model - Markov matrix - h(0) -
logarithm of its spectral radius
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Theorem: Given any tree pattern 0, there
exists a model (called canonical model)

(

,P.f) such that f exhibits the pattern 6

over P and f iIs monotone on any interval
[a,b] defined by a pair a,b of consecutive
points of P. Moreover, h(f) = h(0).

[ Example: blackboard ]
The canonical model is essentially unique.
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Given a pattern 6 and its canonical model
(T,P,f), the f-image of each vertex of T Is
uniguely determined and Is either a vertex
or belongs to P. Thus, P U V(T) Is an

Invariant set. [ Example: blackboard ]

* So, P U V(T) defines a Markov patrtition (a
set of maximal closed intervals whose
Interiors do not intersect P U V(T)).
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« Canonical model = Markov partition of k
Intervals - k x k Markov matrix M -
h(6) = logarithm of its spectral radius

* M s a binary matrix: Mij=1 if the I-th
interval f-covers the J-th one, 0 otherwise.



A remark: collapsing intervals

* Let (T,P,f) be the canonical model of a
pattern. It may happen that, for some
Markov interval [a,b], f(a)=f(b), Iimplying
that the f-image of [a,b] collapses to one
point: [a,b] Is called a collapsing interval.

[ Example: blackboard ]



Reduclibility

* Reducible systems are those such that the
space can be decomposed in connected
pieces with pairwise disjoint interiors which
are permuted by the map.

* In this situation the behaviour of the
original map can be related with the
dynamics of an iterate of the map on the
reduced pieces.



Alm

* We want to clarify in full the notion of
reduclibility (irreducibility) for periodic tree
patterns. Next we provide precise
definitions of these notions and study their
dynamical implications at a topological
level.

« \We also relate these features to the
algebraic properties of the Markov matrix.



Some Algebra

Recall that a nonnegative matrix M Is called
reducible If, for a permutation matrix A,

My 0
ATMA = (1
(Mm MQQ>

where M11 and Mz22 are square matrices.
Otherwise M Is called irreducible.




Some Algebra- I

* An irreducible matrix M is called primitive If
all powers M" are irreducible for n = 2.
Otherwise M is called imprimitive.

* It is well known (Perron-Frobenius) that an
Irreducible matrix M Is primitive if and only
If there exists n =2 1 such that all the entries
of M" are positive.



Block structures

 Let T be atree. Forany X c T, the convex
hull (X) of X Is the smallest connected
subset of T containing X.

* Let (T,P,f) be the canonical model of an n-
cyclic pattern. The pattern is said to have
a p-block structure if there is a partition P
=P1uUP2uU...UPpwithf(Pi) = Pi+1 and
(P N Pj= Q)forany pair{1i,j}.
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* If in addition (Pi) N (Pj) = @ for any pair
then the block structure is called
separated.
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{1,3,5,7,9,11,13,15} U

. {2,4,6,8,10,12,14,16} is a
et (non separated) 2-block
’ ° " structure.
‘L a/\ _ {1,5,9,13} v {2,6,10,14} U
AN {3,7,11,15} U {4,8,12,16} is a
’ ...  separated) 4-block structure.



Some results

Let 6 be a cyclic pattern and let M be its
assocliated Markov matrix.

 Theorem 1: M is reducible if and only if 6
has either separated block structures or
collapsing intervals.

* Theorem 2: M is primitive if and only if 6
has no block structures and no collapsing
Intervals.




An example
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0 has a unique block-structure, {1,3,5} U
{2,4,6}, which Is not separated. By Theorem

1, M is irreducible. Moreover, by Theorem 2,
M IS Imprimitive.
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* This Is In contrast with the interval case!
For interval patterns, if the Markov matrix
IS Irreducible, then it is primitive:

 Theorem 3: Let 6 be a simplicial cyclic
pattern and let M be its Markov matrix. If M
IS Irreducible then M Is primitive.




The skeleton

* When a cyclic pattern has a p-block
structure one can construct its skeleton,
which Is a p-cyclic pattern obtained by
collapsing each block to one point and
defining a p-periodic map in the obvious
way.




The skeleton — an example
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* A sequence of skeletons:

{1,7} u {2,8} U {3,9} U {4,10} U {5,11} U {6,12} >
2> {1,4tu {2,5} U {3,6} 2

- trivial 3-cyclic pattern (one discrete component)



Starry patterns

* A cyclic pattern 0 is called k-starry if
there Is a sequence of patterns 01,
02, ..., Ok such that 61 = 0, 6i+1 Is the
skeleton of 6i and 6k is a trivial
pattern (one discrete component).

* An example: the 12-cyclic pattern in
the previous slide.
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 Theorem 4: The entropy of a cyclic
pattern 0 is zero if and only 0 is k-
starry for some k.
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Surprisingly, the following results
were unknown even for the interval
case:

* Corollary 5: Let be an n-cyclic
pattern 6 =[ T,P,f]. Then, h(6)=0 if
and only if all patterns [ T,P,f ], with
gcd(k,n)=1, have entropy zero.
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» Corollary 6: Let be an n-cyclic
pattern 6 =[ T,P,f]. Then, h(6)>0 If
and only if all patterns [ T,P,f< ], with
gcd(k,n)=1, have positive entropy.




