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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The aim of the present contribution is to study the periodic orbits of a rigid body with a fixed point and
quasi-spherical shape under the effect of a Newtonian force field given by different small potentials. For
studying these periodic orbits we shall use averaging theory. Moreover, we provide information on the C*-
integrability of these motions.

The motion of a rigid body with a fixed point is described by the Hamiltonian equations associated to the
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This is a Hamiltonian in the Andoyer—Deprit canonical variables (L, G, 1, g) of two degree of freedom with
the positive parameters A, B, C'and H.

cos? l) L2

with

~
Q| T

2
) sin g cos [,

Qf =

2
) sin g sin [,

1, 1 2 1
A'"B C _ A B - : _
2 , B = 5 7 5. The parameter 3 is known as the
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triaxial coefficient. Note that o can take any positive value depending on the physical characteristics of the

rigid body. But the triaxial coefficient S is bounded between zero (the oblate spheroid A = B) and one (the
prolate spheroid B = (), although it is undefined in the limit case of a sphere, taking any value between zero
and one depending on the direction in which we approach the limit. See for more details [1].

We introduced the parameters a =

In this work we assume that 0 < a = ¥ < 1, i.e. Then the Hamiltonian (1) is expressed by

GQ
HZQC | 5k731+U(k17k27k3)7

where P =55 (G?

o C — L2) (1 — Bcos2l). Moreover we shall consider the following three cases:

Case 1. U(ky,ko,k3) =| |Case 2. Ul(ky, ko, k3) = Case 3:  U(ki, ko ks) =
€V(k1, kg, kg) and k£ = 2, 1.e. EV(kl, kg, kg) and k£ = 1, 1.e. EQV(kl, ]CQ, kg) and k = 1, 1.e.
G? G? G”
HZQC’ FePy + 2Py, (2) 7—[:20 Fe(P1+ P2). (3) 7—[:20 FePsy + £4P1. (4)
where 7)2 = V(kl, kg, kg)

We note that P; measures the difference of the shape of the rigid body between a sphere and a tri-axial
ellipsoid, and P, measures the external forces acting on the rigid body. We shall assume that the perturbing
functions P; are smooth in the variables (L, [; G, g).

COROLLARY 2

A spherical rigid body with Hamiltonian (2),
weak potential Py = ak; + bke + cks with a, b and
c positive and € # 0 sufficiently small has in every
positive energy level at least four linear stable peri-
odic orbits if R > 0, two linear stable periodic orbits
it R = 0, and two linear stable periodic orbits and
two unstable ones it R < 0.

THEOREM 1

We consider the motion of the rigid body with a
fixed point under the action of the Hamiltonian (2).
On the energy level H =h > 0 if € # 0 is sufficiently
small, then for every zero (Lg, ly) of the system
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THEOREM 3

We consider the motion of the rigid body with a
fixed point under the action of the Hamiltonian (3).
On the energy level H =h > 0 if € # 0 is sufficiently
small, then for every zero (Lo, ly) of the system
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there exists a 21 —periodic solution
(L(g,€),l(g,e),G(g,e)) in the wvariable g of the
rigid body such that (L(g,0),1(g,0),G(g,0)) =
(LQ, l(), V QCh) when ¢ — 0.
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satistying (5), there exists a 27 —periodic solu-
tion (L(g,¢),l(g,€),G(g,e)) in the variable g of

the rigid body such that (L(g,0),1(g,0),G(g,0)) =
Let R = (a2 —b?)2(a2+b2)+ (a* —6a2b? +b*)c2. Anap- g y (L(g,0),1(g,0),G(g,0))

plication of Theorem 1 is Corollary 2. It describes the
motion of a non-homogeneous sphere with center of
mass at the point (a, b, c) under a weak gravitational
Newtonian potential.

(Lo, lop, V2Ch) when ¢ — 0.

COROLLARY 4

A quasi-spherical rigid body with Hamiltonian
(3), weak potential P, = cks with ¢ > 0 and € # 0
sufficiently small can have at least eight periodic or-
bits in every positive energy level.

Corollary 4 describes the motion of a non-
homogeneous quasi-spherical rigid body with
center of mass at the point (0,0,c) under a weak
gravitational Newtonian potential. The linear stabil-
ity of the periodic orbits described in Corollary 4 can
be studied using the averaging theory as well.

THEOREM 5

We consider the motion of the rigid body with a
fixed point under the action of the Hamiltonian (4).
On the energy level H =h > 0 if € # 0 is sufficiently

small and
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then for every zero (L, ly) of the system
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satistying (5), there exists a 2m—periodic solu-
tion (L(g,¢),l(g,€),G(g,e)) in the variable g of
the rigid body such that (L(g,0),1(g,0),G(g,0)) =
(Lo, lo, V2Ch) when € — 0.
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COROLLARY 6
A quasi-spherical rigid body with Hamiltonian

(4), weak potential Py = ck3 with ¢ > 0, energy level
H = h = 3H?/(2C) and ¢ # 0 sufficiently small can
have at least fourteen periodic solutions.

In the proofs of Theorems 1 and 3 we shall use the
averaging theory of first order, and in the proof of
Theorem 5 we shall use the averaging theory of sec-
ond order. The C!' non-integrability in the sense of
Liouville-Arnold of this problem can be studied, see

12].

2. PROOFS AND DETAILS

To see the proofs and details see paper [2], which
is currently submitted, at the web

http://www.dmae. upct es/~7jlguirao
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