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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS
The aim of the present contribution is to study the periodic orbits of a rigid body with a fixed point and

quasi–spherical shape under the effect of a Newtonian force field given by different small potentials. For
studying these periodic orbits we shall use averaging theory. Moreover, we provide information on the C1–
integrability of these motions.

The motion of a rigid body with a fixed point is described by the Hamiltonian equations associated to the
Hamiltonian
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This is a Hamiltonian in the Andoyer–Deprit canonical variables (L,G, l, g) of two degree of freedom with
the positive parameters A, B, C and H .

We introduced the parameters α =
1
A + 1

B −
2
C

2
C

, β =
1
A −

1
B

1
A + 1

B −
2
C

. The parameter β is known as the

triaxial coefficient. Note that α can take any positive value depending on the physical characteristics of the
rigid body. But the triaxial coefficient β is bounded between zero (the oblate spheroid A = B) and one (the
prolate spheroid B = C), although it is undefined in the limit case of a sphere, taking any value between zero
and one depending on the direction in which we approach the limit. See for more details [1].

In this work we assume that 0 < α = εk � 1, i.e. Then the Hamiltonian (1) is expressed by
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(1− β cos 2l) . Moreover we shall consider the following three cases:

Case 1: U(k1, k2, k3) =
εV (k1, k2, k3) and k = 2, i.e.
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+ εP2 + ε2P1. (2)

where P2 = V (k1, k2, k3).

Case 2: U(k1, k2, k3) =
εV (k1, k2, k3) and k = 1, i.e.
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Case 3: U(k1, k2, k3) =
ε2V (k1, k2, k3) and k = 1, i.e.

H =
G2
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+ εP2 + ε2P1. (4)

We note that P1 measures the difference of the shape of the rigid body between a sphere and a tri-axial
ellipsoid, and P2 measures the external forces acting on the rigid body. We shall assume that the perturbing
functions Pi are smooth in the variables (L, l;G, g).

THEOREM 1
We consider the motion of the rigid body with a

fixed point under the action of the Hamiltonian (2).
On the energy level H =h > 0 if ε 6= 0 is sufficiently
small, then for every zero (L0, l0) of the system
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there exists a 2π−periodic solution
(L(g, ε), l(g, ε), G(g, ε)) in the variable g of the
rigid body such that (L(g, 0), l(g, 0), G(g, 0)) =

(L0, l0,
√
2Ch) when ε→ 0.

LetR = (a2−b2)2(a2+b2)+(a4−6a2b2+b4)c2. An ap-
plication of Theorem 1 is Corollary 2. It describes the
motion of a non–homogeneous sphere with center of
mass at the point (a, b, c) under a weak gravitational
Newtonian potential.

COROLLARY 2
A spherical rigid body with Hamiltonian (2),

weak potential P2 = ak1 + bk2 + ck3 with a, b and
c positive and ε 6= 0 sufficiently small has in every
positive energy level at least four linear stable peri-
odic orbits if R > 0, two linear stable periodic orbits
if R = 0, and two linear stable periodic orbits and
two unstable ones if R < 0.

THEOREM 3
We consider the motion of the rigid body with a

fixed point under the action of the Hamiltonian (3).
On the energy level H =h > 0 if ε 6= 0 is sufficiently
small, then for every zero (L0, l0) of the system
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satisfying (5), there exists a 2π−periodic solu-
tion (L(g, ε), l(g, ε), G(g, ε)) in the variable g of
the rigid body such that (L(g, 0), l(g, 0), G(g, 0)) =

(L0, l0,
√
2Ch) when ε→ 0.

COROLLARY 4
A quasi–spherical rigid body with Hamiltonian

(3), weak potential P2 = ck3 with c > 0 and ε 6= 0
sufficiently small can have at least eight periodic or-
bits in every positive energy level.

Corollary 4 describes the motion of a non–
homogeneous quasi–spherical rigid body with
center of mass at the point (0, 0, c) under a weak
gravitational Newtonian potential. The linear stabil-
ity of the periodic orbits described in Corollary 4 can
be studied using the averaging theory as well.

THEOREM 5
We consider the motion of the rigid body with a

fixed point under the action of the Hamiltonian (4).
On the energy level H =h > 0 if ε 6= 0 is sufficiently
small and ∫ 2π
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then for every zero (L0, l0) of the system
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satisfying (5), there exists a 2π−periodic solu-
tion (L(g, ε), l(g, ε), G(g, ε)) in the variable g of
the rigid body such that (L(g, 0), l(g, 0), G(g, 0)) =

(L0, l0,
√
2Ch) when ε→ 0.

COROLLARY 6
A quasi–spherical rigid body with Hamiltonian

(4), weak potential P2 = ck23 with c > 0, energy level
H = h = 3H2/(2C) and ε 6= 0 sufficiently small can
have at least fourteen periodic solutions.

In the proofs of Theorems 1 and 3 we shall use the
averaging theory of first order, and in the proof of
Theorem 5 we shall use the averaging theory of sec-
ond order. The C1 non–integrability in the sense of
Liouville–Arnold of this problem can be studied, see
[2].

2. PROOFS AND DETAILS
To see the proofs and details see paper [2], which

is currently submitted, at the web

http://www.dmae.upct.es/~jlguirao
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