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Introduction

Consider a planar polynomial differential system

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (1)

where the dependent variables x and y are complex, the independent
one (the time) t is real or complex, and P,Q ∈ C[x, y], where
C[x, y] is the ring of all polynomials in the variables x and y with
coefficients in C. We denote by d = max{degP, degQ} the degree
of the polynomial system.

There was the belief that a Liouvillian integrable system (see def-
initions below) has always an invariant algebraic curve. Moreover,
this claim was proved adding certain hypotheses, see [6]. However
this claim was refuted in [3] where it is proved that there exist Li-
ouvillian integrable polynomial systems without any finite invariant
algebraic curve.

The present poster is based upon the work [5] where we assume
that system (1) is Liouvillian integrable and determine, in terms of
the degree in y of P (x, y) and Q(x, y), when this implies that the
equation has a finite invariant algebraic curve. Indeed, we provide
examples in which, if the condition on the degree in y is not satisfied,
then the system is Liouvillian integrable but has no finite invariant
algebraic curve.

Definitions

• Let f = f (x, y) = 0 be an algebraic curve in C2. We say that it
is a finite invariant algebraic curve by the polynomial system (1)
if

P
∂f

∂x
+ Q

∂f

∂y
= kf, (2)

for some polynomial k = k(x, y) ∈ C[x, y], called the cofactor of
the algebraic curve f = 0. Note that the degree of the polynomial
k is at most d − 1. From (2) it is immediate to check that the
algebraic curve f = 0 is formed by trajectories of the polynomial
system (1).

• Let h, g ∈ C[x, y] and assume that h and g are relatively prime
in the ring C[x, y]. Then the function exp(g/h) is called an expo-
nential factor of the polynomial system (1) if for some polynomial
k ∈ C[x, y] of degree at most d− 1 it satisfies equation

P
∂ exp(g/h)

∂x
+ Q

∂ exp(g/h)

∂y
= k exp(g/h). (3)

If exp(g/h) is an exponential factor it is easy to show that h = 0
is an invariant algebraic curve.

• Let U be a non-empty open subset of C2. We say that a not
locally constant function H : U → C is a first integral of the
polynomial system (1) in U if H is constant on the trajectories
of the polynomial system (1) contained in U .

•We say that a not locally null function R : U → C is an in-
tegrating factor of the polynomial system (1) in U if R satisfies
that

∂(RP )

∂x
+
∂(RQ)

∂y
= 0,

in the points (x, y) ∈ U .

•We recall that, intuitively, a complex Liouvillian function is one
that it is obtained from complex rational functions by a finite
process of integrations, exponentiations and algebraic operations.
We say that system (1) is Liouvillian integrable if it has a first
integral of Liouvillian type.

Preliminary results

The following result relates the Liovillian integrability of a system (1)
with the possible form of an integrating factor made of exponential
factors and finite invariant algebraic curves.

In [1] C. Christopher showed that a polynomial system (1) has a
Liouvillian first integral iff the system has an integrating factor of
the form

R = exp(g/h)
∏

fλii , (4)

where g, h and fi are polynomials and λi ∈ C. Indeed, if g 6≡ 0,
exp(g/h) is an exponential factor of system (1) and fi = 0 are
finite invariant algebraic curves of system (1).

The next result provides the first example of a planar polynomial
differential system with a Liouvillian first integral but no finite in-
variant algebraic curves.

In [3] it is proved that the quadratic system

ẋ = −1− x(2x + y), ẏ = 2x(2x + y), (5)

is Liouvillian integrable and has no finite invariant algebraic
curves.

The particular case of systems of the form (1) with P (x, y) = 1 are
studied in [4] where the following results are given.

In [4], J. Giné and J. Llibre consider planar polynomial
differential systems of the form:

ẋ = 1, ẏ = a0(x) + a1(x)y + a2(x)y2 + . . .+ an(x)yn, (6)

with ai(x) ∈ C[x] for i = 1, 2, . . . , n, an(x) 6= 0.
The following statements hold:

• If n ≥ 2 and system (6) is Liouvillian integrable, then it has a
finite invariant algebraic curve.

• There are systems of the form (6) with n = 1 which are
Liouvillian integrable and have no finite invariant algebraic
curve. For example ẋ = 1, ẏ = (1 + xy) /2.

Main results

Our aim in [5] is to generalize the previous results of [3, 4] to an arbi-
trary planar polynomial differential systems of the form (1). With-
out loss of generality, we can write these systems in the following
form

ẋ = b0(x) + b1(x)y + · · · + b`(x)y`,

ẏ = a0(x) + a1(x)y + · · · + an(x)yn,
(7)

where ai(x), bj(x) ∈ C[x] for i = 1, 2, . . . , n, j = 1, 2, . . . , `,
an(x)b`(x) 6= 0.

Our results characterize when a Liouvillian integrable system (7)
possesses a finite invariant algebraic curve.

Theorem 1. Consider a planar complex polynomial
differential system (7) with a Liouvillian first integral. If
n > ` + 1 then the system has a finite invariant algebraic
curve.

The next proposition provides examples that when n ≤ ` + 1, the
thesis of Theorem 1 does not hold.

Proposition 2. Given k ≥ 0 and s > 0 integers and k even,
consider the polynomial differential systems

ẋ = 2xy + yk, ẏ = 1. (8)

ẋ = yk + (x+ y)s−1(− s+ 2xy + 2y2), ẏ = s(x+ y)s−1. (9)

ẋ = s(x+ y)s−1, ẏ = xk + (x+ y)s−1(− s+ 2x2 + 2xy
)
. (10)

ẋ = s(x + y)s−1
(
1 + 2x(x + y)s

)
,

ẏ = 1− s(x + y)s−1
(
1 + 2x(x + y)s

)
.

(11)

ẋ = 1− s(x + y)s−1
(
1 + 2y(x + y)s

)
,

ẏ = s(x + y)s−1
(
1 + 2y(x + y)s

)
.

(12)

These systems are Liouvillian integrable and have no finite
invariant algebraic curves.

Proofs

Proof of Theorem 1.
This proof is by contradiction. We assume that the differential sys-
tem (7) is Liouvillian integrable, i.e. has a Liouvillian first integral,
and has no finite invariant algebraic curves. By the above cited
result of Christopher [1] we know that if system (7) is Liouvillian in-
tegrable, then it has an integrating factor of the form (4). Therefore
if system (7) is a planar Liouvillian integrable polynomial differen-
tial system without finite invariant algebraic curves, then it must
have an integrating factor of the form R = exp(g(x, y)), where g
is a polynomial. We recall here that g = 0 does not need to be an
invariant algebraic curve of system (7). We assume that the degree
of g with respect to the variable y is m. Then we write g as a poly-
nomial in the variable y with coefficients polynomials in the variable
x, i.e. R = exp(g(x, y)) = exp(g0(x) + g1(x)y + · · · + gm(x)ym).

Now we impose that R is an integrating factor of system, i.e.,

∂R

∂x
ẋ +

∂R

∂y
ẏ +

(
∂ẋ

∂x
+
∂ẏ

∂y

)
R = 0, (13)

and we obtain the following identity(
g′0 + g′1y + · · · + g′my

m
)(
b0 + b1y + · · · + b`y

`
)

+(
g1 + 2g2y + · · · + mgmy

m−1
)(
a0 + a1y + · · · + any

n
)

+

b0
′ + b1

′y + · · · + b`
′y` + a1 + 2a2y + · · · + nany

n−1 = 0,

after dividing R. We have avoided the dependence on x of the
functions ai, bj and gk to simplify notation.

We are assuming that n > ` + 1. So the highest power in y in the
previous identity is ym+n−1 whose coefficient ismangm. Since an is,
by definition, the coefficient of the highest power in y in ẏ, it cannot
be zero and the same reasoning holds for gm. Hence, mangm = 0
implies m = 0. Consequently the integrating factor is of the form
R = exp(g0(x)). Therefore, from equation (13) we have that

g′0
(
b0 + · · · + b`y

`
)

+ b′0 + · · · + b′`y
` + a1 + · · · + nany

n−1 = 0.

Since n > `+ 1 the highest power in y in the previous expression is
yn−1 with coefficient nan. The vanish of this coefficient leads to a
contradiction because n > 1 by assumption and an cannot be null.

Proof of Proposition 2.
We first consider system (8), which has the inverse integrating factor

V (x, y) = ey
2
. By the above cited result of Christopher [1], we

have that it is Liouvillian integrable. We shall prove that it has
no finite invariant algebraic curve. Assume that f (x, y) = 0 is a
finite invariant algebraic curve and we write it expanded in powers
of x: f (x, y) = f0(y) + f1(y)x + . . . + fn−1(y)xn−1 + fn(y)xn,
where fn(y) is not identically zero and fi(y) are polynomials in
C[y]. We write its cofactor also expanded in powers of x: k(x, y) =
a0(y) + a1(y)x+ . . .+ am−1(y)xm−1 + am(y)xm, where ai(y) are
polynomials in C[y]. Equation (2) writes as(
f1 + 2f2x + . . . + (n− 1)fn−1x

n−2 + nfnx
n−1
)

(2xy + yk)

+
(
f ′0 + f ′1x + . . . + f ′n−1x

n−1 + f ′nx
n
)

= (a0 + a1x + . . .

+am−1x
m−1 + amx

m
)(

f0 + f1x + . . . + fn−1x
n−1 + fnx

n
)
,

where we have avoided the dependence on y to simplify notation. We
observe that the highest order of x in the left–hand side is n and the
highest order of x in the right–hand is n+m, which implies m = 0.
Now we equate the highest powers in x of both sides, which corre-
spond to the coefficient of xn: nfn2y + f ′n = a0 fn. Since fn is a
polynomial in y, we deduce that a0 = 2ny and fn needs to be a con-
stant which we take equal to 1 without loss of generality. The equa-
tion corresponding to the coefficients of xn−1 is: (n − 1)fn−12y +
nyk + f ′n−1 = 2ny fn−1. The integration of this linear differential

equation gives fn−1(y) = cey
2

+ (n/2)ey
2
Γ
(
(k + 1)/2, y2

)
, where

Γ denotes the Euler–Gamma function. Since k is even and fn−1
is a polynomial in y, we deduce c = n = 0, which means that the
invariant algebraic curve can only depend on y. But since ẏ = 1,
we get a contradiction.

The other four systems (9), (10), (11) and (12) are obtained by
rational transformations of variables from system (8) and a rescaling
of time, if necessary. Therefore, they all have a Liouvillian first
integral which is the transformation of the first integral of system
(8). In order to explicit the transformations without confusing the
names of the variables, we write system (8) as u̇ = 2uv+vk, v̇ = 1.
The transformation (u, v) → (x, y) with u = (x + y)s and v = y
gives system (9). The other rational transformations can be found
in [5]. We remark that if one of the systems (9), (10), (11) or (12)
has a finite invariant algebraic curve f (x, y) = 0 by the rational

change of variables, then equation du
dv = 2uv + vk has a particular

algebraic solution. We recall here Theorem 3.1 of [2].

Theorem 3. Consider system (1) and the corresponding ordi-

nary differential equation dy
dx =

Q(x,y)
P (x,y)

. Let ϕ(x) be an algebraic

particular solution and we call f (x, y) the irreducible polyno-
mial satisfying f (x, ϕ(x)) ≡ 0. Then, the curve f (x, y) = 0 is
an invariant algebraic curve of system (1).

Since equation du
dv = 2uv+vk has no finite invariant algebraic curve,

we conclude that systems (9), (10), (11) and (12) have no invariant
algebraic curve.
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