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Introduction

In this poster we recover the pioneering results of Stokes [5] and
Urabe [6] that provide a theoretical basis for proving that near trun-
cated Fourier series, that approach a periodic solutions of a ordinary
differential equation, there are actual periodic solutions of the equa-
tion. This result can be applied independently of the method that has
been used to get such approximation. We present a couple of concrete
examples coming from planar autonomous systems. In one of them
we use the Harmonic Balance Method (HBM) to get an approximated
solution while in the other we use a numerical approach.

Consider the real non-autonomous differential equation

x′ = X(x, t), (1)

where X : Ω× [0, 2π] → R is a C2-function, 2π-periodic in t, Ω ⊂ R

is a given open interval and the prime denotes the derivative with
respect to t. Recall that any smooth 2π-periodic function x(t) can
be written as its Fourier series,

x(t) =
a0
2
+

∞
∑

m=1

(am cos(mt) + bm sin(mt)) ,

where

am =
1

π

∫ 2π

0
x(t) cos(mt) dt, and bm =

1

π

∫ 2π

0
x(t) sin(mt) dt,

for all m ≥ 0. Hence, it is natural trying to approximate the 2π-
periodic solutions of the functional equation

F(x(t)) := x′(t)−X(x(t), t) = 0, (2)

by using truncated Fourier series, i.e. trigonometric polynomials.
There are several ways of obtaining this truncated Fourier series, for
instance, the HBM or simply by numerical approximation.

What is the HBM?

The HBM is an heuristic method used for finding periodic solutions
of (1), or equivalently, periodic functions which satisfy the functional
equation (2). The HBM of order N is defined as follows.
Consider a trigonometric polynomial

yN(t) =
r0
2
+

N
∑

m=1

(rm cos(mt) + sm sin(mt)) ,

with unknowns rm = rm(N ), sm = sm(N ) for all m ≤ N . Then
compute the 2π-periodic function F(yN(t)). It has also an associated
Fourier series

F(yN(t)) =
A0

2
+

∞
∑

m=1

(Am cos(mt) +Bm sin(mt)) ,

where Am = Am(r, s) and Bm = Bm(r, s), m ≥ 0,
with r = (r0, r1, . . . , rN) and s = (s1, . . . , sN).
The HBM consists in finding values r and s such that

Am(r, s) = 0 and Bm(r, s) = 0 for 0 ≤ m ≤ N. (3)

The hope of the method is that the trigonometric polynomials found
using this approach are “near” actual periodic solutions of the differ-
ential equation (1).

A simple example

Consider the planar ordinary differential equation

ẋ = −y + x(a + dx2 + exy + fy2)

ẏ = x + y(a + dx2 + exy + fy2)
(4)

with a = −1, d = 3 and e = 2. In polar coordinates it writes as

ṙ = −r + (cos(2t) + sin(2t) + 2)r3. (5)

where we have renamed θ as t. The above equation is a Bernoulli
equation that can be solved explicitly. Its solutions are r(t) ≡ 0 and

r(t) = ±
1

√

2 + cos(2t) + ke2t
.

Therefore its unique periodic solution, which corresponds to a limit
cycle of (4) is

r∗(t) =
1

√

2 + cos(2t)
. (6)

It is easy to prove that it is hyperbolic and unstable, see [3].

Let us forget that we know the exact solution to illustrate how to
use the HBM for (5) to obtain an approximation to the periodic so-
lution (6).

Following the HBM, we consider the functional equation

F(r(t)) = r′(t) + r(t)− (cos(2t) + sin(2t) + 2)r3(t) = 0. (7)

We look for an approximation of the form r(t) = r0+ r2 cos(2t). The
vanishing of the coefficients of 1 and cos(2t) in the Fourier series of
F(r(t)) gives the nonlinear algebraic system:

r0 − 2r3
0
−

3

2
r2r

2

0
− 3r2

2
r0 −

3

8
r3
2
= 0, r2 − r3

0
− 6r2r

2

0
−

9

4
r2
2
r0 −

3

2
r3
2
= 0.

One of its approximate solutions is r̃0 ≈ 0.7440, r̃2 ≈ −0.20139.
Obviously, if we apply a higher order of the HBM, then the approach
of the periodic solution is better. However sometimes it is not possible
to solve the nonlinear algebraic system (3). In this example, we apply
the HBM up to eighth-order. Thus, we obtain the candidate to be
solution

r̃(t) =
4

∑

k=0

r2k cos(2kt), (8)

with r0 = 0.74574891, r2 = −0.20168366, r4 = 0.04065712,
r6 = −0.00909259, and r8 = 0.00213382

Is it possible to guarantee that near the calculated
approximate solution by using the HBM, there is
a periodic solution of the differential equation?

The affirmative answer to this question is given by Stokes and Urabe,
see [5,6]. For knowing the result, we need introduce some definitions.

Definitions

Let x̄(t) be a 2π-periodic C1-function. We will say that

• x̄(t) is noncritical with respect to (1) if

∫ 2π

0

∂

∂x
X(x̄(t), t) dt 6= 0. (9)

Notice that if x̄(t) is a periodic solution of (1), then to be noncritical
is equivalent to be hyperbolic.

• the accuracy of x̄(t) is

S := ||s(t)||
2
=

√

1

2π

∫ 2π

0
s2(t)dt,

where s(t) := F(x̄(t)) = x̄′(t)−X(x̄(t), t).

Notice that periodic solutions of (1) have accuracy 0.

•M ∈ R is a deformation constant associated to x̄(t) and X if

||yb(t)||∞ ≤ M ||b(t)||2, (10)

where yb(t) is the unique 2π-periodic solution of the linear periodic
system

y′ =
∂

∂x
X(x̄(t), t) y + b(t),

b(t) is a smooth 2π-periodic function, and ||f ||∞ = maxx∈R |f (x)|.

Finally, we need to give a bound for the second derivative. Given

I := [ min
{t∈R}

x̄(t)− 2MS, max
{t∈R}

x̄(t) + 2MS] ⊂ Ω,

let K < ∞ be a constant such that

max
(x,t)∈I×[0,2π]

∣

∣

∣

∣

∣

∂2

∂x2
X(x, t)

∣

∣

∣

∣

∣

≤ K. (11)

Next theorem improves the result of Stokes and Urabe in the one-
dimensional setting. More concretely, they prove the existence and
uniqueness of the periodic orbit when 4M2KS < 1. We give a similar
proof with the small improvement 2M2KS < 1; see [1]. Moreover
our result gives, under an additional condition, the hyperbolicity of
the periodic orbit.

Theorem (Stokes, Urabe):

Let x̄(t) be a 2π-periodic, C1–function such that

• it is noncritical with respect to (1),

• its accuracy with respect to (1) is S

•M is the deformation constant associated to x̄(t) and X

• given I there exist K satisfying (11).

Therefore, if 2M2KS < 1, there exists a 2π-periodic solution
x∗(t) of (1) satisfying ||x∗− x̄||∞ ≤ 2MS, and it is the unique
periodic solution of the equation entirely contained in this strip.

In addition, if the integral (9) in absolute value is bigger than
2π/M then, the periodic orbit x∗(t) is hyperbolic, and its sta-
bility is given by the sign of the integral.

Return to the example

Once we have the approximate solution (8), we need to verify that
the theorem applies.
Computing the accuracy of r̃(t) we obtain that it is 0.0039. Because
of the rational number of the coefficients make more difficult the
subsequent computations, we approximate all the coefficients of (8)
by suitable convergents of their respective expansions in continuous
fractions. This is done in such a way that using these new coefficients
we obtain a new approximate solution with similar accuracy.
For instance some convergents of r0 are 1, 2/3, 3/4, 41/55, 44/59,. . .
and we choose 44/59 and we do this for each r2k. Thus, we can
consider as an approximation of the periodic solution

r̄(t) =
44

59
−

24

119
cos(2t)+

2

49
cos(4t)−

1

110
cos(6t)+

1

468
cos(8t). (12)

The accuracy of r̄ is S = ||F(r̄(t))||2 = 0.0039. By calculating the
deformation constant M and K we obtain M = 2.4 and K = 20.91.
Finally, 2M2KS ≈ 0.96 < 1 and the Theorem can be applied.

Therefore, we have proved the following

Proposition. Consider the periodic function r̄(t) given in (12). Then
there is a periodic solution r∗(t) of (5), such that

||r̄ − r∗||∞ ≤ 0.0192,

which is hyperbolic and unstable and it is the only periodic solution
of (5) in this strip.

Remark: Using the analytic expression of r∗(t) given in (6) it can
be seen that indeed

||r̄ − r∗||∞ ≤ 0.0007.

A rigid cubic system

The second example corresponds to the rigid cubic system

ẋ = −y + x
10(1− x− 10x2),

ẏ = x + y
10(1− x− 10x2),

that in polar coordinates writes as

ṙ =
1

10
r −

1

10
cos(t) r2 − cos2(t) r3, (13)

which has a unique positive periodic orbit, see [2].
In this example, we found computational difficulties to obtain the
third-order approximation given by the HBM. So, we got numerically
the approximation to the periodic solution; then, we computed, also
numerically, the first terms of its Fourier series, and finally, we used
again the continued fraction expansions to simplify the values appear-
ing in our computations. We have proved:

Proposition. Consider the periodic function

r̄(t) =
4

9
−

1

693
cos(t)−

1

51
sin(t)−

1

653
cos(2t)−

1

45
sin(2t)−

1

780
cos(3t).

Then, the differential equation (13) has a periodic solution r∗(t),
such that

||r̄ − r∗||∞ ≤ 0.042,

which is hyperbolic and stable and it is the only periodic solution
of (13) contained in this strip.
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